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A NUMERICAL MODEL FOR THE COMPUTATION OF RADIANCE DISTRIBUTIONS
IN NATURAL WATERS WITH WIND-ROUGHENED SURFACES

Curtis D. Mobley
5 Rudolph W. Preisendorfer et
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3 ABSTRACT. This report is a repository of the details of ¢€$¥§

R derivation of a numerical procedure to determine the unpolarized gk@k{
radiance distribution as a function of depth, direction, and B

g wavelength, in a natural hydrosol gpch as a lake or sea. The n&%v
K input to the model consists of (i) the incjdence radiance #ﬁ“ﬁ
) distribution at the air*water surface (iif the state of randomness %ﬁhf
ﬁ of the airfwater surface as a functicn of wind speed, {iii) the Nﬁsﬂ
t volume scattering and volume attenuation functions of the medium _?ﬁg&
as a function of depth and wavelength, and (iv¥ the type of bottom P

boundary.

3 The fundamental mathematical operation, in the development of b% .
1 . . A Y T . ’ by
: the numerical modelqhs the discretization over direction space of ,.Jdﬁ
: the continuous radiative transfer equation. The directionally %ﬁ&ﬂ
discretized radiances, called quad«“averaged radiances, are the
: averages over a finite set of iolid angles of the directionally Nty
¢ continuous radiance. The quadvaveraged equations are azimuthally ﬁh*g
N decomposed using standard Fourier analysis to obtain equations for ~3$
the quadraveraged radiance amplitudes. These amplitude equations g&mq
B are then developed in terms of reflectance and transmittance e
functions. The reflectances and transmittances are continuous ' Py
; functions of depth and are governed by a set of Riccati equations ‘??W
‘ which is easily integrated. The depth»dependent, quad%averaged jﬁﬂﬁ
p radiances are assembled from the solution reflectances and 3 gﬂ
i transmittances of the water body, in combination with the boundary e

conditions.

The model has an expandable library of derived quantities
that are of use in various applications of optics to natural

; waters, such as marine biological studies, underwater visual ;

) search tasks, remote sensing, and climatology. ' . gﬁ"ﬁ

1. INTRODUCTION

This report presents a numerical technique for computing the radiance

distribution in a natural hydrosol, given the optical properties of the

hydrosol itself and appropriate boundary conditions at the surface and bottom

of the water body, along with the radiance incident on the water surface.

General knowledge of the radiance distribution in a natural hydrosol is a

?‘
Lors

prerequisite for the solution of more specific problems, such as those

.
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} occurring in studies of photosynthesis, underwater visibility, remote sensing "':::.':s
of the ocean from aircraft or satellites, heating of the upper layers of the :;'t ‘.:,_.
medium, and climatology. Our goal is thus the development of a model of some ‘:"
generality and relatively high computational efficiency, rather than the ".:'::::3;
solution of any particular problem. An analogous goal would be the .'::":l':?f
formulation of a numerical model for the general circulation of the atmosphere v;;
or oceans. Such a model, once available, can be used as a tool for the Ea‘é::
solution of many specific problems. Some of the immediate applications of the .':':'::'
present model are to study various hypotheses about the behavior of the ' ‘:;
radiance distribution with depth, direction, and wavelength, and to establish ’:h ::E
the ranges of validity of simpler light field models that are potentially EE
useful in marine biological studies and in underwater visual search tasks. :,—.2-
Ry
Water bodies such as oceans and lakes are well approximated locally as c,(
plane parallel media for the purpose of determining the light field within ':’
these natural hydrosols. Thus we consider a water body which is laterally i f“:"
homogeneous, although its optical properties may vary arbitrarily with .”.'
depth. The wind-blown water surface forms the upper boundary of the hydrosol, ":‘
and a plane of specified radiance reflectance forms the lower boundary. The &g
upper boundary is statistically homogeneous but exhibits a directional qj. :_
anisotropy due to the presence of wind-generated waves. The lower boundary, : X ¥
for example a sandy lake bottom, is less prone to anisotropy. Natural waters '-‘,?"‘.'
are directionally isotropic with respect to the scattering properties of the .:?
medium, although the scattering functions may be far from spherical in shape ::tg 1
and the optical properties of the water may vary markedly with depth. =00 vy
! v
Moreover, the dominant light sources in the euphotic zones and mixed layers of w
natural hydrosols are the sun and diffuse sky light, rather than internal %f .:f
sources such as fluorescing chlorophyll in phytoplankton. -.'::'
’l
2 :::::a:':a:
- RO
B AR A e ;.":.‘ ‘.WE'{‘S-"':: Al.;,‘“. A A J,Z i ‘~:._~.:_ N :_3', *-. ‘-'Q--.@.. SRR n.\.»‘;‘-.\ RO

. NN -d'
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a. Assumptions of the Natural Hydrosol Model (NHM) ‘c"'
With these comments in mind, we define in this work a Natural Hydrosol :.”'-rg:f"
oo
Model (NHM) by adopting the following assumptions: :f_f,. N -
o ok
(1) The water body is a plane-parallel medium which . ._;:
(a) has no internal light sources, and is non-fluorescent 'ﬁ,‘
. . . . . W
(b) 1is directionally isotropic, ':“,'!':‘:::‘:;t
0.".‘(
. .. . ORI
(c) 1is laterally homogeneous, but is inhomogeneous with depth. q‘c':}az"o"
@
(2) The upper boundary is the random air-water interface, which is wind- T
s
ll’lf
ruffled, laterally homogeneous, and azimuthally anisotropic. :',:::2:
Q.':IQ‘
(3) The lower boundary is a surface whose reflectance is azimuthally .:::!;::'
isotropic. This boundary may be either the physical bottom of an 1.“:‘*
o aly A%
optically shallow water body, or a plane in an optically infinitely ':&',::‘:E:::‘
e
deep water body, below which the water is homogeneous with depth. gﬁ-.
e &
(4) There is radiant flux incident downward on the upper boundary. w:
B . J .‘\ |".|
There is no radiant flux incident upward on the lower boundary. o:::o"‘:,::ga
|i~t !
(5) The radiance field is monochromatic and unpolarized. \,c'iﬁ"::?;
]
The exact meaning of these assumptions and their mathematical consequences ¢ 9..;:
” 2
e
will be clarified in the discussions below. @_‘: Lk
e
Section 2 presents the integrodifferential equation which governs the fﬁ;"’_'
light field under the assumptions of the Natural Hydrosol Model. In §3 we REACEN
s'h'“'}}.
present a technique for the directional discretization of the continuous k:;
"__.F‘N )
equations of §2, and this is followed by a review of the Fourier analysis of :1:;_,\
. . . ®
discrete functions in §4. These analysis formulas are then applied in §5 to k 'l"l;:
_ W)
the directionally discrete equations of §3, in order to obtain a discrete Qﬁ; '
%, ) “l
o t
spectral model. These spectral equations are algebraically reformulated in §6 1\.(;7 .
@
in order to derive equations which are suitable for numerical solution on a o
X L (]
(0
I'|‘l'g:l:‘.|::
3 |..|(.‘.|‘1
00 0 VW T N I ~a r ~.5'~."'Q'."‘
P RN A TR e R \'.-‘ ﬂ._m.,_\ W ]
«:»««: :‘: Y ":»'“ SRR ::tit A e I s
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digital computer. In §7 we show how to solve the model equations for the

’:'-t -
N

spectral amplitudes, and then how to reconstitute the desired radiance Ty
i o
% distribution from those spectral amplitudes. Section 8 discusses the ﬂgu'
¥ .
5 AT
% computation of various derived quantities from the computed radiances and the Iﬁi‘:
¢ ot
& by
2 consequences for simple models of the light field in natural hydrosols. by
; Sections 9-11 discuss certain preliminary calculations which are needed in J z&
& SO
# W
{ order to set up the desired boundary conditions and inherent optical Fégg&
p e,
¥ 00
K properties as input to the Natural Hydrosol Model. We close with a section on :“_i
. L
K} computer considerations, such as array storage. SE
" g
K 0
¢ " .!.
) ' .:l
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In this section we present the equations which govern the light field ot g:' 3

[

the Natural Hydrosol Model. Our starting point is the radiative transfer NS TLD

ety
equation plus equations which describe how light is reflected by and X *gg.
ittt

transmitted through the boundaries of the water body. Figure 1 establishes a ;g&

coordinate system for the expression of these equations.

According to lc of the Natural Hydrosol Model assumptions, the water body
can be represented by extensive horizontal layers of scattering-absorbing
material parallel to the upper and lower boundary surfaces. As shown in

Fig. 1, a wind-oriented spherical coordinate system (y,08,4) is defined so that

e
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Figure l.--The geometric setting of the Natural Hydrosol Model and definition NS
of the wind-based coordinate system. The i vector is along the wind f{f:}\!
. - T . - : .. o
direction. The i,j,k vectors form a right-handed system with k positive *(*:*:
upward. ®
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the downwind direction at the water surface has an azimuthal angle of ¢ = 0.
The azimuthal angle ¢, 0 < ¢ < 27, is measured positive counterclockwise from
the downwind direction when looking downward on the water surface from above.
The polar (or zenith) angle 9, 0 < 8 < wn, is measured from the unit outward

normal k (the zenith direction). The normal k is perpendicular to the

bounding planes of the water body and defines the upward direction. Since the
hydrosol is laterally homogeneous, the depth coordinate y is the oniy relevant
spatial coordinate. We take the optical depth y to be a running depth
variable, a £ y £ b, measured positive downward from the upper surface,
located at level a, to the lower boundary surface at level b.

We adopt the convention that the two depths a and x seen in Fig. 1 define
a region a £ y < x, which we call the upper boundary. In most applications of
the model, this region can be considered infinitesimal in thickness,
consisting only of the air-water surface. However, there are situations in
which the upper boundary may actually be a composite medium consisting of the
infinitesimal air-water surface plus a slab of finite thickness representing,
for example, an oil film or a surface layer of relatively great biological
activity just below the surface. In either instance the notation is such that

" _1n

"a" denotes a point in the air and just above the water surface, while "x

denotes a point in the water below the surface. In our basic computations,

the upper boundary is always considered to be an infinitesimally thin layer, Eéiﬂ
which merely reflects or transmits light without absorption; in such a case S&S‘
the boundary itself has no internal structure. The lower boundary is defined lif
as a slab of depths y, z < y < b, where b-z may be infinitesimal, finite, or i N
infinite. In any of these cases "2 denotes a depth in the water just above : o
the lower boundary, and "b" denotes the depth of the lower plane of this gfn‘
boundary. The water body itself is the plane parallel region of depths y such Eﬁi;
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that x < y < z, We will often use the notation "X[yl,yzl"‘to refer to the
slab between and including depths y, and y,. Thus the upper boundary of the
natural hydrosol is the slab X[a,x], the body or water column is X[x,z], the
lower boundary is X[z,b], and so on. The use of two symbols "a" and "x" in
X{a,x] helps keep in mind that the top of the air-water surface is at a and
the bottom is at x, even though these are infinitesimally close.

The independent variables for the Natural Hydrosol Model are the optical

depth y and the direction § = £(8,0), where § = (§,,£,,£3) is a unit vector,

™

i.e., §-£ = 1. It is often convenient to use u = cos® = §-k rather than 9

itself; then we can think of £ as specified by u and ¢: & = g(u,s), where

-1 £u<1l, and 0 £ ¢ < 2n, If a wind-oriented cartesian coordinate system
i-j-k is defined in accordance with Fig. 1, with i pointed downwind, k upward

as defined above, and j = k x i in the crosswind direction (at ¢ = x/2), then

£(8,9) can be written in any of the forms

(T3]
il

= g1+ &)+ 85k = [£,,8,,8,]

[sind® cos¢, sind sing, cos@]

[(1_u2)3 cosd, (l-uz)li sind, uj .

The fundamental dependent variable of the Natural Hydrosol Model is the
spectral radiance N(y;E;\) at depth y in direction § at wavelength A. The
photons are travelling in direction §{. Since the water body is assumed non-
fluorescent and the radiance is monochromatic, the wavelength X\ is held
fixed. We therefore drop "A" from the explicit notation and write the

radiance as N(y3;g;x) = N(y3;g) = N(yju,4), with units of W-m~2-sr~!.-nm-!,
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In the model to be developed we begin with radiant energy from the sun or
sky incident upon the random water surface at y = a. This energy is partly
reflected back to the sky and partly transmitted into the water column at
y = x and below. The details of this transmission through the random surface
are determined by the wave field on the water surface (and hence by the wind
speed) and by the directional distribution of the light sources. It is
intuitively clear that the time-averaged or ensemble-averaged radiance N(y;§)
is thereby determined at each depth y of the entire water column, x < y < z,
and for all directions §, by the absorption and scattering properties of the
water and by the interreflections of radiance between the upper and lower
boundaries. The analytical basis for this belief rests in the equation
governing the radiance field in the body of the water and in the boundary

conditions above and below the water body.

a. The Radiative Transfer Equation
The equation for conservation of unpolarizéed, monochromatic radiance
N(z3£) in a source-free optical medium is the Radiative Transfer Equation (cf.

Preisendorfer, 1965, pp. 65-69):

dN(z38)

57— = ~ole) N(z3E) + [ N(z3g") olesg'sg) dalg') (2.1)

Here ¢ is geometric depth measured positive downward, i.e., along the
direction -k. Moreover, r is the geometric distance (always positive) from a
point at the geometric depth 7 measured along direction §; r and ¢ have units
of meters. = is the set of all unit vectors £, i.e. the unit sphere, and
de(g') is an infinitesimal element of solid angle about direction £'. The

volume attenuation function a(g), with units of m~!, and the volume scattering
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function o(%3£5E"'), with units of m=!-sr~!, are considered to be known
quantities and are called the inherent optical properties of the water.
The integration of any function f(g) = £(6,4) = f(p,¢) over all

directions f, as in (2.1), is expressible in any of the equivalent forms

T 2w 1 2%
J £(g) daCg) = [ [ £(0,0) sinedede = [ [ £(u,e) dude .
z o o0 -1 0

We separate the unit sphere = into upper, = and lIower, E_, hemispheres

+)

defined by

i
IA
=

IA

{Cu,0): O 1, 0 € ¢ < 27w}

1)
m

{(u,9): =1 <u<0,0c%<¢ <21} .

"+" 1"_n

In a similar fashion we will often use a or "-" guperscript as shorthand

notation to indicate quantities whose { vectors are in the respective I, or Z_

hemispheres. Thus, for example, we have the upward radiance N+(y;§) = N(ysg)

in

when £ ¢ 2, and the downward radiance N (y3;f) = N(y;£) when § ¢
Equation (2.1) can be placed into a more convenient form for numerical
work by noting (from simple plane-parallel medium geometry and our choice of
geometric depth ¢ as positive downward) that dr = -dz/u. Here r and f are
both interpreted as physical distances, in meters. If we define an increment

of optical depth, dy, as

a(z)dg

dy

then dr = -dy/(au) and (2.1) can be written
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dN(y3E) Uty

W —— g = “Nly3g) + _(aly). [ M(ysg') o(ysg'sg) dalg') (2.2) PO

{n
3
.-

for x <y <z and § € 5. Henceforth the depth variable y will be interpreted h;
as optical depth, which is nondimensional. The Natural Hydrosol Model uses aﬁm”u
the optical depth y as its depth variable, since it is the optical depth which NS
summarizes most efficiently the depth behavior of the light field. gb?a?

In the absence of scattering, o = 0 and (2.2) can be immediately
integrated to obtain a simple law of exponential decrease of radiance with oot

optical depth. However, in natural hydrosols, scattering processes are of

fundamental importance, and the integral in (2.2), which embodies the

phenomenon of "space light" in underwater environs, must be treated with great ROREN
care. The scattering function o(y3;§';E) describes how strongly photons at "o.:t:.
depth y initially traveling in direction 5' are scattered into direction §g. "
For directionally isotropic media, the directional dependence of o rests only '.q,‘__,nk:f
on the angle between £' and g, and not upon their absolute directions. Thus ‘\.:;‘:{
for the Natural Hydrosol Model we have, for various convenient forms of '..",‘.a*

notation: ) (RO

)
alysu',0"5u,0) = oly;g'-£) = ol(ysv) , (2.3) ":'.\‘

Q

-
~
-e
(N
-e
[

o
]

1 L
cos¥ = £'-E = u'u+ (1-u"2)% (1-u2)? cos(e'~e) (2.4) T

defines the scattering angle ¥, 0 < % < w. This simplification of ¢ will have w
an important influence in the choice of numerical solution procedures. . 3%

Without loss of generality, and in a convenient contracted notation, we
can write ¢ as the product of the volume total scattering function, s(y), and

the phase function, p(yju): A

10 ‘l"
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. @
alysv) = s(y) p(ysw) , (2.5)
|
where we have defined
p(ys¥) = olysv)/s(y) (= p(y;E"3E) = p(y3E'-£) = plysu',0'5u,0))
and where the volume total scattering function is defined by
n ' ¢
s(y) = 2= f a(ys3v) siny dv (= [ o(ysg'3g) da(g)) . (2.6)
0 z
It follows from (2.6) that the phase function must satisfy
oy
“ J
27 [ p(y;¥) siny dv = 1 for any vy,
0
or returning to the full (u,¢) notation,
1 2%
J ] plysu',0'su,0) dude =1 (= [ p(y3g's;g) da(g)) (2.7) A
-1 0 g [
for any y, u' and ¢'. The volume total scattering function s(y) thus is a )
<
measure of the overall amount of scattering, and the phase function p(y;¥) L
contains the information about the shape of the scattering function. s.,
Substituting (2.3) and (2.5) into (2.2) gives A
dN(y3g)
g e -N(y3g) + w(y) ,_f N(y3g') p(y;£'3g) da(g') (2.8)
X Sy sz
E ez ESthy
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where w(y) = s(y)/a(y) is the scattering-attenuation ratio or albedo of single e

scattering. This ratio satisfies 0 < w(y) < 1 and is a measure of the o,

relative importance of scattering and absorption processes in the water. Wy

o g

Equation (2.8) is the basic equation of the Natural Hydrosol Model. s

P

b. Boundary Conditions at the Water Surface l%ﬁﬁ?

,/,,w
) +
!
-

e

.

At the random upper boundary of the water, downward radiance incident .¢¢ﬂ

I
}
-

from the sky onto the water surface is partially reflected back to the sky and Oty
partially transmitted through the surface into the water. Moreover, upward RN

radiance incident from the water onto the underside of the water surface is RIS
]

PO
-
-
-
)

partially reflected back to the water and partially transmitted through the A
o5 surface into the air. These processes, after time or ensemble averaging, are X
s expressed by the pair of equations (cf., Preisendorfer, 1965, p. 123, DN

s Eq « II ) i 'o.'a,

< J
11—y .(ll —
.
A,
>

RY : N(x;E) N(a3g') tla,x;8';38) da(g') A

N(x;_&_') r(x,a, ) dQ(E ) , (2.9) %,

(Paa]
™
in

]

#
[} J
) and hrtey:

N(x3£') tlx,a3g';8) dae’) )

S (1)
+

o N(a3g)

N(a,g') r(a,x3g'38) daCg') , ge= . (2.10)

-
]
.
b
Sl

2

roas
LA XX

s
s slen
o

) * Equations (2.9) and (2.10) are instances of the interaction principle for
e surfaces of plane parallel media. Eq. II of the cited reference allows us Wttty
1Y to write down (2.9) and (2.10) in general, on the grounds of linearity of 'fﬂ
- radiative transfer processes. However, in any specific application of 't

Eq. II, one must actually determine the numerical values of the r and t @
’ functions. This is the task of the procedure in §9, below. ‘
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The r and t functions describe in averaged form how radiance is reflected and ‘o Yol
'
transmitted by the boundary.* In particular, in the first term on the right l,::' ‘|
() '!, '
hand side of (2.9), t(a,x3;E';E) determines how much of the downward radiance .,.‘,:;':;
“0 it s“
. . . . 0
N(a3g'), incident on the upper surface at y = a along direction §' ¢ Z_, is '~““’
transmitted through the surface into the water at y = x along direction :;': .J;::
i‘g ﬁ',.Cy‘%
S . . Bl
E ¢ £_. Likewise, the second term on the right side of (2.9) shows how much '|“$v:§it;s;
= . "..G‘.:! i
. . . B YA
of the upward radiance N(x3£'), incident on the lower side of the 'surface at 30" (LA
‘
y = x along direction £' ¢ 2, is reflected back into the water along ';'0:'
- ‘! ’Q
. . . . )
direction § € =_. Similar comments hold for the terms of (2.10), where now 2,"{.:.3:5
' t'.‘l’g‘!‘ ¢
. . . . . bt
upward radiance is being transmitted through the surface from the water side ahutly
to the air side. Note the reversed (x,a) notation in t(x,a3;£';£) and the l" I::
Tt
. . .. l' 5
reversed hemispheres of £' and £, relative to the transmission term of ,,“:::z;:‘:
ddte
(2.9). Likewise in the second term of (2.10), downward radiance from the sky R '
.
is being reflected back ta the sky by the water surface. The order of the 'o:'.:z:i.f:;§
OO0
b
(a,x) and (x,a) arguments identifies the four distinct r and t functions of :::s::ﬁ::;ai
] "'Qi'l ('q
. . ) et
(2.9) and (2.10), which shows our use of the depth conventions of Fig. l. v"‘.":tfl'c
‘
When computing the light field in the hydrosol, these reflectance and ..' i
yhe
. . . . 0‘:“1.
transmittance functions must be known. For certain special cases, such as '0‘ 'l
“Q,.s
that of a perfectly calm sea surface, the r's and t's are available in "'z“
analytic form. However, in the general case of a wind-ruffled, anisotropic ':;;::q:y
1
‘l""'“.l‘
sea surface, the linear interaction principle notwithstanding, the '.ﬁﬁt
N NN
UL
- . - . . - . H "‘.
determination of the r's and t's is a relatively difficult task. Later in A "'!:"x
this study we will show (in §9) how the reflectance and transmittance ‘:::E!";s:;
(RN,
. . . . . it
functions can be numerically estimated for wind-blown water surfaces using '.:;0"!:*3
3( 0:.::' Q
L (]S
A
* For an alternate approach to the random surface's effect on the light field
at and below the surface of a natural hydrosol, see H.0., Vol. VI, '\}
Ch
secs. 12.10-12.17. Al AN
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¥ geometrical optics, quad averaging, and suitable constructions of random -dé A
3 ‘“w

surfaces. p—
L]

‘~‘v . . '
; c. Boundary Conditions at the Water Bottom :%?:

A pair of equations analogous to (2.9) and (2.10) can be written for an

a v

arbitrary lower boundary. However, the assumptions of the Natural Hydrosol Yot

iy

"

Model lead to lower boundary conditions which are much simpler than those of

-

-

the surface. Since there are no light scurces below the lower boundary, there -
i3 is no radiance incident on the lower boundary from below, and therefore the l{%#

o transmission term may be omitted. Thus we have only ﬁﬁkf
)

2: N(z;g) = f N(Z;S') t(z’b;§'3£) dn(s') , Eec= , (2.11) .éﬁﬁ

By -
Jd o0

which shows how downward radiance incident on the lower boundary is reflected S
back upward into the water. There is no need for an equation giving N(b3g), %“&
£ ¢ £_, corresponding to (2.10), since we are not concerned with finding the hiog
iight field below the bottom (although we will find the emergent light field
}S above the surface via (2.10)). X
““ Either of two types of bottom boundaries can be modeled by the Natural Nioe
Hydrosol Model. The first is a matte bottom, which represents for example a Y
iy sandy or silty lake bottom. For a matte surface, the reflectance function is Q%w

.ﬂ (H-O-, VOI. II, pc 215):
r-
et !‘(Z,b;s' ;5) = r(z,b;E' ,2 ;B,g) = - ;_ u' , (2.12) .:"..i

where r_ is the irradiance reflectance of the matte surface, 0 < r_ < 1. Note

' that p' < 0 since £' ¢ Z_ in (2.11). We see from (2.12) that radiance "
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incident on the matte bottom is equally reflected into all directions *s&édqq
e ese Y

3 ,.i' 8%

. C . . . i

& = E(u,4), independent of the incident azimuthal angle ¢', in accordance with %ﬂﬂ{é&ﬂ
[ ]

our assumption of an isotropic lower boundary. ».k.
l

. . ‘e‘ Xy

The second type of bottom boundary is a plane at level z. Below this "gdhhs

ey

. . . .. . . . SN

plane is an optically infinitely deep water body, in which the optical ’Qﬁmﬂﬂ

properties of the water have a specified variation with depth. In this case qﬁ‘ %p

' . 'o,“\‘.v. cet.

r(z,b3E"3E) gives the reflectance at depth z of the water body due to the ngwaaf

. RTINS

"’ U 6’9 £

upward scattering of downward radiance at all depths in the entire water body f'ﬁ:?g
. . ] .

below level z. An appropriate form of this reflectance is developed in §10. KRR

Wl

j ".: '.::.0::,!
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d. Discretization of the Model Equations : 'ﬁﬂﬁﬂﬂﬂ

Equation (2.8) and boundary conditions (2.9)-(2.11) constitute the ;v‘ag'g

65 1y

304 “E ‘i‘r

continuous geometrical form of the Natural Hydrosol Model (NHM). The word éﬁﬁ?‘hf

fgtigh

. . . . . s

"continuous" refers to the formulation of the model as an integrodifferential ?ﬁhﬂﬂﬁy

equation in which the direction variables 6 and ¢ may take any real values in %Wﬁaﬁq
L

28 |'.":'"a?

their allowed ranges, and the term "geometrical" refers to the setting of the éﬁﬁ??&;

..‘ 055

: : . OO0

equations in the physical space suggested by the plane-parallel geometry of ﬁw?&ﬁf
the water body. However, in order to solve the NHM equations on a digital ‘fﬂ

. .. . . . . ,u%‘;z Y v‘f

computer (with finite storage capacity), we have decided to discretize the .léﬂ%q

. - N s
equations so that only a finite number of radiance directions need be .!¢5s”

computed. This discretization process is the subject of the next sectionj the

result is termed the discrete geometrical form of the NHM. Furthermore, it is

numerically advantageous, for the reason explained below, to recast the

discrete geometrical NHM into a spectral form, termed the discrete spectral ‘?fgafj

NHM. This final formulation of the NHM is solved for a finite set of discrete ?ﬂ';

spectral amplitudes. These amplitudes are then used to compute the discrete '}g&;“
geometrical radiances, which are the final ‘output of the numerical model. In Tjﬁ%

A
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the limit of infinitely fine resolution in our chosen discretization process, |."::S:‘s
Wy

S

these discrete geometrical radiances approach the continuous geometrical - ‘
radiances which are in turn the solutions of the continuous geometrical . o&..:.
B

equations. Note that the word "spectral' now, and henceforth, refers to the .l:':'

Fourier decomposition of the azimuthal angle, and not to the wavelength of

Lieh !
ight. o;‘:ﬁ*'
2 c‘:‘:

. . . . . . L. . 3ot
Before proceeding with the discretization operations, it is worthwhile '::' "::
considering the theoretical and numerical implications of two available paths . .
Lt
which lead to discretized model equations. The path briefly sketched above is ;:‘,:,:::?.
4 4
. . . . . . . W
shown as the right hand branch in Fig. 2. The discretization process consists :t.'s:::':
. Coe . . . .. 'I 3

of first partitioning the unit sphere % into a finite number of subsets "'"'
'.v(’t
bounded by lines of constant u and constant ¢. These subsets are termed gquads ..‘:'.s::
\'*
s
and can be visualized as regions bounded by latitude and longitude lines on a ‘."“g':f:
l‘.'l‘ (]
00
globe (cf. Fig. 3 below).* After defining these quads, the discretization .'"
i i : : . R
process consists of integrating all model equations over the various quads, ;':::nz::c
(]
A
where "integration over a quad" means integrating over all directions £ such "'::':f
- 1
‘g.l‘.
that £ is within the solid angle subtended by that quad. The discretization "'
LTy
is thus a directional averaging of the continuous equations, after which, for 'g,:'a."t
Al
)
15
example, a continuous radiance N(y;f) is replaced by a discrete radiance %:;':':t;\
) |".‘Q

. . .. . oD
N(ysu,v), where (u,v) are the discrete integer indices labeling quad Qv \ ?
AN
N(ysu,v) is the average of N(y;f) as § varies over Q,,- The model equations .."': "f
MR

Y

of level 2 in the right-hand branch of Fig. 2 turn out to be a set of coupled p_\'-;z"
ot

x

it
* This intuitively simple procedure generalizes the classical partition of the ,.,',
unit sphere = into just two subsets I, and Z_, the upper and lower .ﬂ:::::
hemispheres of directions about each point of the environment, and which .l"::o:..u
yielded the classical two-flow theory of light. For an initial exploration $- iy
of this generalization see H.0., Vol. V, pp. 57-61 and H.0Q., Vol. IV, 0:::«
pp. 97-103. It is perhaps of interest to note that this procedure returns hotl
to and completes a numerical solution program outlined along the present
lines 20 years ago (cf. Preisendorfer, 1965, footnote, p. 204). Modern e \J
computers now allow that program to be completed and widely applied. Wl ,?.:‘
".‘i:'.I
'n‘.‘-
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§2

ordinary differential equations with respect to depth y for a finite number of
discrete, or quad-averaged, radiances. It is important to note that any loss
of resolution, or realism, éf the present numerical model when compared to
nature, occurs in the quad-averaging level of the discretization procedure.
The Fourier polynomial analysis leads to an uncoupling of the equations over
azimuth space, without loss of information. This permits a savings in
computational effort when handling reflectance and transmittance matrices.
The remaining steps of the sothion procedure eventually yield a set of
discrete geomeprical radiances which are exact solutions of the discrete
geometrical model equations. How closely these solution radiances correspond
to the "true'" solutions of the continuous equations depends only on how fine
is the original partitioning of the unit sphere = into quads. The loss of
model accuracy thus has an easily visualized, geometrical origin, and the
discrete solution radiances are readily interpreted as averages of the '"true"
continuous radiances.

An alternate approach to obtaining a finite set of model equations is
shown as the left hand branch of Fig. 2. In this approach, which goes back to
the early work of Eddington and of Jeans (1917), the continuous geometrical
model equations are first Fourier analyzed over direction space using
spherical harmonics to find an infinite set of equations for the discrete
spectral radiance amplitudes. No loss of accuracy occurs in this level of the
reformulation. However, the infinite series in these spectral equations must
be truncated at some finite value in order to obtain a finite set of coupled
ordinary differential equations for the spectral amplitudes that is amenable
to numerical solution. It is this truncation which introduces a loss of
accuracy into the numerical model, particularly in the hydrologic optics

setting which has volume scattering functions that are highly peaked in the
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forward direction; a faithful representation of o(y;E';£) requires very many

spherical harmonics to be retained by the model. The solution radiances of

level 5 on the left branch in Fig. 2 are now exact solutions of the truncated
model equations; these radiances themselves are continuous functions of the nanse
azimuthal angle ¢. How closely the solution radiances correspond to the true ﬁ‘.:::".
radiances depends only on how many terms were included in the truncated . ‘.ﬁ’:‘.
series. Although the solution radiances are easily interpreted as &:'f
approximations of the true radiances, the loss of model accuracy due to series .";
truncation at the spectral equation level is not as easily visualized. It is ...“;‘
for this reason that in this study we adopt and explore the potentialities of tu,c‘“‘m:
the right hand path of Fig. 2 as our solution procedure. The primary goal is g:"“;;
the form of the local interaction equations, (5.29), below). n,’,q

.

It may be noted that the left branch of Fig. 2 can also lead to local

interaction equations of precisely the form (5.29). This means that the 'l'

solution procedures of §6 and 7 are also available for exploration of the
numerical road starting out along the Eddington-Jeans {(i.e., the left) path of PN aldey
Fig. 2. Indeed, the first rudimentary form of this approach is due to Q’..:; h‘:
Chandrasekhar (1950) building on an insight of Ambarzumian (1943). .W..

The next several sections of this report give the mathematical details of

the various steps outlined above and in the right branch of Fig. 2. q{\.}\‘
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;;, 3. DIRECTIONAL DISCRETIZATION OF THE MODEL EQUATIONS s
6% .
‘! \’N 3
o We now address the mathematical details of the directional, or quad, ;-'"
. L
- averaging of the model equations. e
1:'( P
‘*‘3’ o (‘"
[ ¢
:‘ o l.
oL a. Partitioning the Unit Sphere "'gs
~: For our purposes we partition the unit sphere of directions, Z, into ;-‘r"
) AT
8 L
K . P
';;o quadrilateral domains called quads, and into polar caps. A quad is bounded by ,:-{-..‘
o oy
v circular arcs of constant . (or 6) and circular arcs of constant ¢. The polar SR
]
e:Q caps are circular domains centered on the two poles of the sphere. Figure 3 iy
%g 5t
::: illustrates a partitioning of Z by means of 9 circles of constant u (4 in the Q::'%i
i "
i . . . -A
faf upper hemisphere, 4 in the lower hemisphere, and the equator) and by 20 A .::
o
F < semicircles of constant ¢. Thus there are 4 x 20 + 4 x 20 = 160 quads, and '“‘_':
P i
K: two polar caps. The notation "qu" denotes the quad indexed by the pth u band .}':.-
b ]
o and the qth ¢ band, where p and q are numbered from a reference quad chosen :J':uf'
i for convenience. We are free to center the q = 1 row of quads on the ¢ = 0, :}%}
Oy, Fa
s . . . . . .. . oy
f, or downwind, direction as shown by the wind-oriented i-j-k coordinate system e
3 - - *r
e‘o b,'- g
W in Fig. 3. The figure also shows two directions, £' and §, respectively :_”‘
" » . - . = = . =
;:' belonging to two different quads, Qrs = Q1,4 in Z_ and qu Q3’5 in £, . Note _::
& . . . . ~
:,'i. that the solid angles Q.. and Q  associated with quads Q. and Q , are in -:':.\-
W . e
h general unequal in size. z:-r
o o
: Let the number of quads in the u-direction be M (counting polar caps) and ‘;
i S
" let the number in the ¢-direction be N (we have M = 10 and N = 20 in : N
) "‘
. } o
Fig. 3). Furthermore, let M and N he even, i.e., of the form M = 2m and -:_
i N = 2n and, as will be convenient later (cf. paragraph f, below), let n itself s
B "-.;"'
" et
::l‘ be even. This restriction to even M and n values represents no significant ::.‘
N g,
v loss of generality in the numerical model, but greatly simplifies the analysis ":..
o
formulas. We also require that non-polar cap quads have equai angular widths
A¢ in the ¢-direction, thus
J
20 !
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Figure 3.--An example partitioning of the unit sphere into quads, for the case i
of m=5, n =10. The origin of the wind~oriented i-j-k coordinate :
system is at the center of the unit sphere Z, and QT and § are unit
vectors.
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B Then the centers of the non-polar quads Q, have the ¢ values .:;:,:.j
o N
b ‘.l‘,‘.
Bk :'o!:'a
::,‘ ¢v = (V-I)A¢ ’ v = 1,00.,2“ . (3-1) ."“:::
3 |I|‘l
; s
xiif “t;""
..‘: The azimuthal angle ¢, is not defined for the polar cap quads (just as ¢ is :E:::;::
o+ not defined at the poles, 8 = 0 and 8 = v, in a spherical coordinate ‘i“':
K pirleles
i system). ';:
‘9; ‘t,ﬁa‘:ﬁ
' . . )
] The angular size Au (or 48) of the quads in the u direction can be fixed t:l:::‘
(AN
A as desired., There is no requirement that the quads in different u-bands .i\';’(
¥ O' 4
e WA
i) defined by pairs of neighboring u circles have equal Ap values. One simple :::::&
N X
A AKX
W] scheme for defining the u-bands is to let Au = Au = 1/m, and thus have quads ::::::::
of equal u-size and hence of equal solid angle (except for the polar cap ..‘
A , . : . Al
) quads) @ = Ay _Ad_ = Audd, since A¢_ = n/n. With this choice there are :'.i :
0 uv u v v \? ;‘:0,
L N M)
:j 2(m~1)2n non-polar quads of size Q,, = (1/m)(n/n) and two polar cap quads of ,‘“".:f
o size Q = (1/m)(2%), which total to the required 4w steradians in 2. If we 5'06‘0’
igf !
o
i set X
! il
|l ‘...'Q“
‘ . .l‘g.)
.- _ 2n _ _ - [ ]
;E: Auu : a-D)2n+l Ay for u lyee.,m-1 7
KN and Iﬁv
" A 4; l:‘
z - bu = .
D Aum = 2 for the polar cap, u = m, v o)
i “
3 R
:|‘ then all quads, including the polar caps, have the same solid angle w0
. X
L ‘\ (]
g 8Q,, = 88 = 2n/[(m-1)2n+1]. This equal solid angle partition is shown in N
) A
. _ - @
Fig. 4a for m = 10, n = 12. e,
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j; The equal solid angle partition may be inconvenient for some i:;:i:g:,
i; applications, since the quads near the pole cover a large 6 range and thus, :::E:_::E
5 for example, may cause an unacceptable loss of 6-resolution for solar :;::
:z positions near the zenith or lines of sight directed at the nadir. Another ,;E:jizg
¢ convenient choice of u-bands is to use equal A8 values, as shown in Fig. 4b E:E:E:.::;
,E' for m = 10, n = 12. Here Fhe f~resolution is the same everywhere (the polar .:e::::
;: caps have a half-angle of 48/2), but of course the quads in different u-bands gg%
gg have different solid angles 2,,. A quad resolution of m ~ 10, n ~ 12 has been :!:::::::
l; found to be reasonable for use in debugging and in production model runs where "‘:;-."':":'
,? extreme accuracy is not required. EZE“:E';E:
"' Some applications of the Natural Hydrosol Model may require even finer ,:_i:;:.::',
1:: directional resolution. For example, changing the sun's elevation by only a :353‘5
:E few degrees may have a large effect on the subsurface light field when the sun ::3;:.%::
:: is near the horizon. Figure 4c shows a higher resolution, equal A¢ partition ,::::,.l:E
i; of £ withm = 23 and n = 30, so that A9 = 4° and A¢ = 6°. Grids of this :::
z': resolution are currently (1988) at the limit of computational feasibility. ,:5;
*: Figure 4d shows an m = 10, n = 12 grid with an ad hoc A9 selection which gives ::{G’E::
';3 A8 = 2° near the horizon and A8 = 20° near the poles. 'lszmc
E: It can be noted that a grid for which the solar disk, which subtends an .sss:sz
:’ angle of about 0.5°, fills one quad of size 40 = A¢ = 0.5° would require :::::::*
:’ m = 180, n = 360. Since computation and storage requirements of the model are ';,:,
é; generally proportional to m2n?, such a grid would require nearly 300,000 times ,, ‘:
:: the computer effort relative to the m = 10, n = 12 grid. Such resolution is V‘ ‘f
:: far beyond current general-purpose computer capacities (1988). Such ;s":
i’!’: resolution would, however, at present not be beyond the capacity of dedicated 'E:":.:,?:éz
: i
"o
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computers that could be constructed for specific radiative transfer
integration tasks (cf., H.O., Vol. 1, p. 208).*

In our later development we shall have frequent need to evaluate sums of
discrete functions, f(p,q), defined on the quads qu of 5. Thus "2 z f(p,q)"
will denote a sum of f(p,q) over all quads and polar caps in the ugi: sphere

2. Henceforth, unless otherwise noted, the polar caps will be considered as

special quads. We shall also occasionally write sums over all quads as

"y "n_n

separate sums over I and £_, and we shall sometimes add a or
superscript to the summand as a reminder of which hemisphere is referenced by

the sum, as for example in

z 2 £(p,q) = z 2 f+(Pv¢l) + z 2 f-(P1Q)
P9 Pq P q

(qu in ) (Q'pq in 2.) (qu in 3_)

Here "(Q in 2)" means "all quads Q of  are to be summed over."
"(qu in E+)" is interpreted as "all quads qu of £, are to be summed over",
etc. For ease of indexing in the computer code, we also let p = 1,2,...,m

or =_;

label the u~bands of the quads qu, regardless of whether qu is in Z, _

= 1 is the row of quads nearest the "equator" and p = m refers to the polar
cap quads. Since there is no ¢ dependence for the polar caps, these "quads"
are always special cases. The value of f(p,q) at a polar cap will then be

denoted by "t2(m,-)". Thus we write

* Another possibility would be to produce a variable-grid partition of =
around directions where there exists a high radiance gradient. In this way
the grid would be fine around the sun direction and become progressively
less fine away from that direction. This would, however, require a
revision of the spectral decomposition of the present method.
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m=l 2n N m=1 2n _ _ SRR

1Y fpsad = ] I £(p,@) + £(m)+ § ] £ (p,q)+ £ (m-) . sl
Pq p=l q=1 p=1 q=1 )
(3.2) Sl

(qu in 2) t

Sums over £ or I, will always be computed as shown by the explicit notation of ik

(3.2 ) . "J.»f‘.-'n:

b. Quad-Averaging ¥$

Let "F(y;£)" denote any function of depth y and direction §. The gquad- ROkl

[$}]

average of F(y;g) over any quad Q,, in Z is defined by "W'v

Flysu,v) = = Qf F(y3g) da(g) gf F(ysu,e) duds . (3.3) 3::."3
uv uv
uv uv

The quad-averaged quantities are the fundamental building blocks of the "ﬁ:\'ﬁ:r
numerical Natural Hydrosol Model. Owing to the "smearing out" of the ?ﬁh &
continuous F(y3f) by the directional averaging in (3.3), the numerical model .ﬁa‘;
cannot resolve features of the radiance distribution which subtend solid
angles smaller than 2 .. In a manner of speaking, the quad-averaging process :0:
replaces the clear unit sphere (with perfect resolution) by a polyhedron of PRI
frosted glass windows; each window (i.e., quad or polar cap) homogenizes the
radiance distribution within that window. Note, however, that the Natural ﬁﬁﬁﬂd
Hydrosol Model is capable of arbitrarily fine resolution in the vertical i"
direction down through the body of water, so long as the number of depths y, \ 5"‘
where a solution is desired, remains finite. ﬁ\ﬂﬁ-

The basic step of the quad-averaging procedure can be represented as the T
formal replacement of a function F(ys3u,¢), defined on the unit sphere =, by
the following linear combination F(y;u,6) of its quad averages F(y;jp,q): " "é
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=11 F(yspya) g— ff Xp (u,¢) dudo .
P q uv
= F(y;urv)
That is, we have
27
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Flysu,0) = zz x_ C(u,9) F(y3p,q) , (3.4)
P q Pq
as<y=<hb
(u,¢) € &
where
1 if (u,0) € Q
x_ (u,¢) = Pq
Pq 0 if (u,0) ¢ Q
Pq

and where z z denotes a sum over all quads and caps Q in the unit sphere
z, evaluateg :s shown explicitly in (3.2). Observe that F(y;u,¢) is constant
as (u,9) varies over qu, and is of magnitude F(y;p,q), even though the
original F(yj3u,4) in (3.3) may have varied over qu. This follows from our
interpretation of F(yju,v) as an average and emphasizes the consequence of the
directional averaging operation. This same quad average over Q,y» namely
F(y3u,v), is obtained from (3.3) if F(y;u,$) is used in place of F(y;u,¢).
That the step function form F(yj;u,¢) of F(y;u,¢), given by (3.4) is consistent

with (3.3) in this sense, is verified by direct substitution of (3.4) into

(3.3). Thus (3.3) becomes

= [ Fysu,0) ande = 2 [ |} (u,0) F(y;p,q)| dude
uv Q uv Q p

L x
Pq
uv q
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.!
Flysu,v) =.g_1_. JJ Flysu,0) dude (3.5) .'-:;;:-E;}E.
| i

v S
¢

Qv in E é@vfo
l’q 4 Q""“

.l‘y'é
M‘:l

The interchange of summation and integration in the derivation of (3.5) is

possible since only qu(u,¢) depends on (u,¢). But qu(u,¢) is non-zero ?ﬁﬁ%&%
(N 3

.'ugi;‘

(namely of unit magnitude) only when (u,¢) € qu, so the integral over Q , is 'f“f“

non-zero only when quad qu is quad Qv In terms of the Kroneker delta

s
c’e "‘
t

1 if k=0 "‘"«i‘l

§ = (3.6) ), ‘l 0%

k 0if k0, o
y
“ :l."::.:‘

symbol,

the second line of the derivation leading to (3.5) becomes

p .
uv Q 0

1 -

L1 FGspa) g— 6 6 qv [] dude .:::::‘:‘w
Pq - o
nﬁ’i"v

1
= F(yj3u,v) T qu = F(ysu,v) ,
uv

where we have noted that the solid angle of quad Qv 1s just *ﬁ#ﬂq

- ".".'
., = [ dude . (3.7) N,
Uy NS

Thus (3.5) and (3.4) constitute a transform pair which respectively carry a WOAIRX)

function of (u,¢) into a function of (u,v), and conversely. \ﬁ
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c. Discretization of the Radiative Transfer Equation :“; V“;
: 4,

We are now prepared to apply the quad-averaging operator (3.3) to the it

entire radiative transfer equation (2,8); the result will be the quad-~averaged ¥WKK) I

version of the equation. Eq. (2.8) written in terms of (u,$) is ol
“-‘::
;”;

.’i' .'i

& I‘l

-u —dN(d;u %) = N(y3u,8) + wly) [ du'de’ Nlysu',e") p(ysu',e'5u,0) (3.8) DR

z 2
where x < y < z and (u,4) € 5. Let us now consider, term by term, the effect SRR

on (3.8) of quad-averaging. "

(i) The derivative term wﬂﬁ;&

On the left hand side of (3.8) we have a1«ﬁ,f
«.$e,.'
H‘&
0
ALY
G| d¢[ e ety
uv Auu 7 "

= [ ailyiuse) "’j] duds
Q

LlV

u (2) ¢ (2) AN
aw | d¢E dN(ysu,e) i' , :1:-*.,-}:::?
u (1) (»

1

qu dy

:‘—\C

(3.9)

where uu(l), u,(2) and ¢,(1), ¢,(2) are the bounding u and ¢ values, \ “.¢
respectively, of quad Q,,. Thus dy, = #y(2) = u, (1) and
b6, = 6,(2) - ¢,(1). The continuous radiance N(y3u,¢) is replaced by its

approximating step function form using (3.4), so that (3.9) becomes
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§3
uu(2) ¢, (2)
LT dw [ del-u T Y x (u,e) QESZ%ELﬂl
uv uu(l) ¢v(1) P q Pq y
u (2)
_ 1 dN(ysu,v) ,
= Ad p du
qu dy v b (1)
- _ _1 dN(y3u,v) ; -
= -3 dy, b, %[ui(z) ug(l)]
uv
Now nuv = AuuA¢v and

%[ui(Z) - ui(l)] = %[uu(Z) + uu(l)][uz(Z) - uu(l)] = :uAuu ’

where the overbar denotes the average u value over the quad or polar cap.

Thus we have the result

_:u dN(y3u,v)

&y . (3.10)

- IEu dNCysiu,e) i “i] dude =
uv qu

Henceforth we will drop the overbar, and gy will always denote the average u

value over the qu quad or polar cap. Observe that at this stage of the

developments u, can take on negative as well as positive values, just as can

its continuous counterpart u. Thus if Q,y is in E_, then M, <0, and if Q,,

is in =, then u, > 0. Observe that the uu's come in signed pairs by virtue

of the same decompositions of Z,_ and Z_ into quads. (Later, in (5.2) and

beyond, the u will be restricted to their positive subset.)
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§3

(ii) The attenuation term
The first term on the right hand side of (3.8) yields, by definition, the

quad-averaged radiance, -N(yju,v).

(iii) The scattering term

The integral on the right side of (3.8) is quad-averaged as follows:

If [:(Y> IT NCysu',0") plysu',o'5u,0) du'de'| dude
v

u

= gizl I dud°{z Y [f du'de' N(ysu',e") p(y;u',¢';u:¢)l
rs Q

av f

uv
= :( 2 d”d°{z T Jf du'de'|f I x  (u'se') N(y3p,q) P(Y;u',¢';u,¢)}.
uv qu rs P q Pq

In the first step above, the u'-¢' integration over all directions Q has been

rewritten as a sum of integrations over all quads comprising the unit

sphere. In the second step, the radiance has been replaced by its approximate

step function form over each quad. Owing to the step function Xp (u',¢'), we

have a contribution to the u'-¢' integral only when (p,q) = (r,s), which

leaves just

uv

-;iy—) [] dude Z 2 N(ysr,s) [ du'de' p(ysu',6'su,0)
Q

uv rs

= u(y) § } N(ys3r,s) hl— [[ dude [[ du'de' plysu',0'su,0)

rs uv qu Q

rs

wly) § } NCysr,s) plysr,siu,v) ,
rs

where we have defined the quad-averaged phase function as
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§3

e - .
p(y;r,s|u,v) = Hl_ I dude [ du'de' p(ysu',e'su,0) (3.11) ‘ﬁ.‘

§ weoQuy Qs &
x<y<sz 8 w
!

and qu in

ryu = 1l,...,m

b S,V = l,..442n

Note that p(y;r,slu,v) is well defined even if Qrs or Q,, is a polar quad.

Although the discrete azimuthal angles ¢, and ¢, are not defined for the polar A

and ¢ are defined within the polar

quads, the continuous azimuthal angles ¢'

caps, except at the poles themselves (u' = %1, u = *1), so that the

o . . . . . W
% integrations shown in (3.11) can be performed. Following the notational NW*}
b 3
% convention for polar cap values in (3.7), if Q.4 or Q,, are polar caps, we vlakz
¥\ :
W, Y

write p(y;r,s|u,v) respectively as "p(ysm,-|u,v)" or "p(y;r,s|m,-)". If Q_ gt

e
e

and Q,, are both polar caps, we write* "p(ysm,-|m,-)".

P , .‘-b
e i
z

Collecting the results of (i)-(iii) above, we obtain the gquad-averaged :S“Q

radiative transfer equation:

0 -u dNCysu,v) -N(y3u,v) + w(y) } ¥ NCysr,s) p(yir,s|u,v) (3.12) ey
i dy rs bqh

* How these singular cases are handled in a computer program is explained in
§12,
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§3

where z 2 represents a sum over all quads Qrs in £, evaluated as in (3.2). We
rs

now have a finite set of ordinary differential equations with respect to

optical depth y for the finite number of quad-averaged, or discrete, radiances

N(ysu,v). Equation (3.12) is thus the discrete geometric form of the

continuous geometric eq. (2.8).

.a“GW‘*
$4

d. Symmetries of the Phase Function

As discussed in §2a above, the isotropic volume scattering function and gﬂ.

0 ;
i

hence the phase function p(yju',¢'3u,¢) depends at each y only on the angle
betw.en the directions (u',¢') and (u,$). The basic symmetry of
p(ysn',0"5u,0) = p(y3£'3E) is then given by the following equality

p(y3g'38) = p(yiggs3E,) (3.13)

which holds whenever

where, as in (2.4)
' '
£'-g = u'u + (1-u'2)? (1-u2)" cos(e'~s) .
There are four immediate :orollaries of (3.13) which are useful in practice.

Thus we have for p(y;£';g),

1) Invariance under interchange of u',u:

plysu',0'5u,0) = p(ysu,é's5u',0) (3.13a) e
W,
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2) Invariance under interchange of ¢',4:

p(ysnu',0"3u,0) = p(ysu',o3u,0") (3.13b)

3) Invariance under simultaneous sign changes of u',u:

plysu',0'5u,0) = p(ys=-u',0"'3-u,6) (3.13¢)

4) Invariance under simultaneous shifts of ¢',¢; i.e., for all angles a,

plysu',9"5u,0) = plysu’,0'+asu,o+a) (3.134)
As a special case of 4), set a = -¢'. Then with the help of 2),
e
) 1 1) 1 :-‘:
p(ysu',0"'5u,0) = pCysn',05u,0-0") v,
NG
= p(ysu",05u,-(o-¢")) (3.13e) ‘
[
N
This shows that for fixed y, u', and u, p(yj;u',03u,0-¢') is an even A
)
function of ¢-¢'. This observation is a basis for the cosine representation ﬁ%ﬁl
of plysu',¢'5u,0) (cf. (4.11), (3.13k), below, and (5.5a)) which we shall use T3
-
2N
in the reduction of the equation of transfer to spectral form. ?f:a
St
. VAN
In what follows we shall use properties 2)-4) to reduce the complexity of ::fq
o
the spectral form of the equation of transfer. The only property not used is 'i}\
CA
~
1) which is a form of reciprocity property (full reciprocity is obtained by 53;:
"
combining 1) and 2)). ':.i.
®
N
A
N
Y
34 .c".t
o
PP g™ ' ‘l -""'f _, » '\ o™} R'-R’ - - L .' O ‘
‘,. a'::’ ,(w .- b, ’5 ‘,- % e -V"'* » _,"-'5,-. N \:-\.‘” -ﬁ'-.ﬁ"'-.ﬁ *-s \" A "\.S \: ™ _,-.:,\3‘:. ..: :j:é\ A
03 l
A l‘ a,u.l t"m 1,,.",)‘ .)_,.z‘ '\ l'.'n ‘l‘.' bale, ‘("’ WM AC AN ::‘.h‘.l QUGN 'o.‘ "' QOO0 °?-' N "



TR T TR TR U T S L U T A R W S O e S R R T T R O T A T A I Y

B ' §3

The preceding symmetries are inherited by the quad-averaged form of the

[+ phase function. To show these symmetries succinctly we adopt the following

;f conventions. If Qg is in 8  or E_, with r = 1,...,m, then Q-r,s is in 3_ or
¢

& E,» respectively. More precisely, Q-r,s is the quad that is the mirror image,
fy

oy in the equatorial plane of =, of the quad Qs Finally, shifting the

4 azimuthal index s in Q.q by an arbitrary integer a produces a new quad Qr,s+a
o

ff which is the quad qu where q = (s+a) mod{(2n). 1In other words we find q by

'

E dividing s+a by 2n and taking the remainder. A zero remainder is identified

M with 2n. Hence it follows that -s = (-s+2n) mod(2n) (see Fig. S5b, below, for
4

2l the case n = 12. Check, for example, that s+a = 22+4 = 26 mod24 = 2 and that
)

ﬁ -s = =2 = (-2+424) mod(24) = 22.) With these preliminaries, the preceding

u symmetries of p(yj3u',¢';u,4) take the following forms in the quad~averaged

N

\)

A context of the phase function. Each of the following symmetries may be proved
R

N by using the corresponding property 1)=4) in (3.11) and reducing the result to
5 the desired form.

'9'

b)

§ Thus we have for p(y;r,s|u,v),

L)

D

5 1)' Invariance under interchange of r,u:

]

N

i p(ysr,s|u,v) = p(ysu,s|r,v) (3.13f£)
X

i

i 2)' Invariance under interchange of s,v:

?

]

< p(y;r,slu,v) = P(y;t,VIU,S) (3.13g)
I

{ 3)' Invariance under simultaneous sign changes of r,u:

)

b

k p(ysr,sfu,v) = p(ys-r,s{-u,v) (3.13h)
"

4

#y
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§3 R

4)' Invariance under simultaneous shifts of s,v, i.e., for all integers a,
p(y;r,s|u,v) = plysr,s+aju,v+a) (3.131) #’“%ﬁﬂ

g\
From 4)' and 2)' we find ::\":o..‘

p(y;r,5|uyv) p(y;r,Olu,v-s)

p(y;r,Olu,-(v-s)) (3.133)

Since the working range of s and v is 1,...,2n, we can either replace 0 by 2n

. . . . . . . . N
in (13.3j) or using 4)' again, write the preceding equalities as ¢$§u¢ﬁ

p(ysr,s|u,v) = plysr,lju,(v-s)+1)

p(ysr,1{u,(s=v)-1) (3.13k) -

. . . . KRN
e. Discretization of the Surface Boundary Equations %&"

The surface boundary conditions (2.9) and (2.10) on the radiance field W ame
are discretized in the same manner as the radiative transfer equation.

Consider, for example, (2.9): e

N(x3u,6) = [ N(asu',6') tla,x3u',6"3u,0) du'de’ el

(3.14) 'Iﬁ

+
) —

N(x3u',0') rix,a3u’,0"5u,0) du'de’ , (u,0) e 2_ . ,ﬁ,‘:"
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§3 l’n'l!':.':::

The left side of (3.14), when quad-averaged, yields by definition the quad- M 30N

X
(B3]
averaged radiance. The first term of the right side of (3.14) Lecomes ‘...gy:::!
|

-

a.}ﬁ‘ilil.::
1 Vo " o it DN
T JJ dude { [ NCasu',e') tla,x3u',0"3u,6) du'de

uv
QUV

uv

= -9—1— J[ dudé {Z 1[I du'de'|} ¥ Xpq(#'s0") Mlaip,a) t(a,x;u',¢';u,¢)}
Q r s Q P q

uv

after rewriting the integral over Z_ as a sum of integrals over all quads Qs

in E_, and after replacing N(aju',¢') by its approximate step function form

(3.4). The last expression can be reordered to get

uv  Q Q

uv rs . b ot

Y5 YT NCasp,q) {31— [I dude {[J du'de’ x  (u'50") tla,xsu,e'su,0) } TR
rspgq

Observe that the u'-¢' integral involving Xpq integrated over Q.  is non-zero

only if (p,q) = (r,s); so we have left just XA
0 |‘6.| 0‘¢€-

:4'0"“‘4"

i

v

} O

U FOX RN
q.l':.Q'::C
gt 'ok.t
(1 “':I‘"b?
2 N(a3r,s) t(a,x;r,s|u,v) , (3.15) (RSN
s RN

{3 \‘;,:}.,-

zzma;r,s){% [f dude [ du'de’ tla,xsu’,0'su,0)

rs uv qu Qrs

n 0~

after defining the quantity in braces to be the quad-averaged transmittance: O

1 \}
t(a,x3r,s|u,v) = o J[ dude [[ du'de' t(a,x3u',s'3u,0) (3.16) OGN

uv
QUV Ql‘S R AR TR AN

37 o & 3

. . N h

e Ay Hf"!r'\i"'ﬂ ( 'ru,‘r-\,*.\,f\'gf-,r.if»,'..,' T Y AT T T A T VT A TN g "..( My
W, v, o H ! - . LA %

5’-\ Ty l.?(-f:?"l" Ly d ¥ " R ny

. " 5
0 ':a"p O RS OR K s S R N L L N AL A N AN A,
. CUUD O A YA v D e A N S/ T s A S
3 U ') (a0 v AN ‘ d " 2 { o A
2t ta Vi LM, SN o"!:‘i‘,:‘i!:"..:"‘.l."i. X3 .0"-' "‘i‘.‘ﬁ‘ ; ! | ."‘*’)‘?‘5 gf. ‘.m"y“ O "‘:ﬁ"\ A)‘;AA :'fp;{;t 5-*&”:; lﬂﬁ‘(‘m&



N N SN N U T T R L N R WU N U LU R NN N N U U T U L N R OO O M T U T T O oo,

DA L L% "..""0

0"‘ .0‘
"..C
§3 B
.
v. "(h
‘:'O‘o:l
This transmittance is therefore for the downward quad-averaged radiance 't' '!.I

; o

incident at level a of boundary X[a,x]. The second term on the right side of "‘
. . . OENED
(3.14) is treated in an exactly analogous manner to obtain a result Q'.::O:::b
WO
N . . toptely?
R corresponding to (3.15). Collecting these results, we have the discrete .:;::t,::'
‘ Wt
o '\".
geometric boundary condition at level x of boundary X[a,x]: RN
0
-%-‘
; it
8 N(x3u,v) = Z z N(ajr,s) t(a,x3r,s|u,v) + Z z N(x3r,s) r(x,ajr,s|u,v) :.
4 r s ’ r s
s " eLA‘
(3.17) ‘
iy "l‘.&
; 'a‘.'.'.:.
N which holds at level x of X[a,x] for all quads Q_, in 5_. Note how the order ':::5::
‘t
i . . . .
of a,x in t(a,x;r,s|u,v), for example, shows that the (r,s) pairs in the first H
1 . . . . . 7 ;.w
: sum are over Qrs in Z_, while Qrs varies over £, in the second sum. A similar s'::.:::
N )
% OO
2 . . . [N
R equation is obtained from (2.10), namely ﬂ.:uzw:tf
(NN )
f I:q'l::'i
l-a.h
@ 2 0]
b N(aju,v) = z z N(x3r,s) t(x,ajr,s|u,v) + z Z N(ajr,s) r(a,xjr,s|u,v) :;‘.::.."z
# rs rs .ai'of
; (o™
f (3.18) a:::.:"‘.
¢ . . Wy
which holds at level a of X[a,x] for all quads Q,, in Z,. & "
:‘ . . . . ri‘fi‘r
" Just as in the continuous equations (2.9) and (2.10), the four transmittance ier!
¢ alh
ANy
4 and reflectance functions in (3.17) and (3.18) are considered known as regards by ‘§
l. \ £
3 A '
‘ the solution procedure for the radiative transfer equation. We shall consider TR
) ) . . .. R
3 in §9 the numerical computation of these quantities. ,a':.o,:.\
3 i
) | | o ey
o We observe that the continuous transmittance and reflectance functions in .:‘t,l‘;
v St
o . . . . ".
‘ (2.9) and (2.10) have units of steradian—!, whereas their discrete forms seen S
: in (3.17) and (3.18) are dimensionless. The continuous r's and t's are "‘
, w.
: densities, showing how much incident radiance is reflected or transmitted per ":'::::i
\
,. . . . . .
steradian. The discrete r's and t's are integrated densities, showing how
K
:~ much quad-~averaged radiance is reflected or transmitted between particular
2
1
+
)
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§ 3 . . .I N “.‘fﬁ‘d

.‘ Q

a «v.‘-'

quads Q.. and Q, . The magnitudes of the discrete forms depend explicitly onm '.‘ s ‘,.(
f

the solid angles of the quads, as is evident from the defining equation ':!:’:."'p

] L
o('t, "‘:.v,

The quad~averaged phase function of (3.11) and the quad-averaged surface 1, ;”_,
.;'|'1‘.
reflectances and transmittances of (3.16) all have the same mathematical form, '520::'.':

(3.16).

namely f(r,s|u,v) where we write in analogy to (3.11): F

£(r,slu,v) = 2= [ dude [[ du'de’ £(u',0'5u,0) (3.19) AT
uv QUV Qrs ! .

Qrgr Qy in E DSOS

Here f(u',¢';u,¢) is any phase, surface reflectance or surface transmittance
function. Corresponding to f(u',¢';u,4), there is a step function

f(u',6'3u,6), which we use formally to replace £(u',$';u,4), namely :E%{t..:o.’-:
i

- i @
f(U':¢';u,¢) = z z 2 z er(u'v¢') Xuv(u9¢).f(_ré_s'lit'v—) (3.20) mIOLK MR ':'
r s uv

[ 33

(U'QQ'),(H,Q) € 2 Q:‘“:“Q%g!"
RIONGH0
WOy vy
(I AR
“' Oy ’z"i.
- b [

As can be verified, substituting £(u',¢';u,4) into (3.19) we obtain TR
W)

SO0
‘!i"‘d\_' "‘.g

f(r,s|u,v). This is comparable to the verification of (3.3). Therefore,
relations (3.19) and (3.20) are a transform pair which carry a function of two ﬂ 'h"
directions back and forth between the discrete and continuous representations. R T

gl n'.s.:s:.:

Note that for any directions (u',4') in Q. and (u,¢) in Q,,, (3.20) Rttty

implies that ety

! B340,
£Cu',0'5u,0) = f—(i%ji’—“l (3.21) "":':':'!ja

rs )
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and (u,¢) in Q,,. This result is also obtained

for all (u',¢') in Q¢

approximately from (3.19) if Q. and 2 are sufficiently small so that

Once again

$u,0) can be taken as constant over the quads Qrs and qu

f(u'y¢‘

we see the implications of the quad-averaging operation on the directional

* resolution of a physical quantity., Note also that if we wish to numerically

ﬁ‘ compare any two-directional quad-averaged quantity (e.g. r(a,x3r,s|u,v)) with g;"h‘
§-_ its continuous counterpart (in this case, r(a,xju',¢'3u,¢) for (u',¢') in Qs :%g%g
] !
B and (u,¢) in Q ), then the rule in (3.21) says we must first convert the ;gﬁf
] dimensionless, quad-averaged quantity f(r,s|u,v) into its approximate, a;ga
)
dimensional, continuous counterpart by dividing £(r,s|u,v) by @__. cfhﬁ

e f. Symmetries of the Surface Boundary R

The discussion of the previous section is valid for completely arbitrary

However the actual model of a wind-blown sea surface which

r and t functions.

we adopt for the natural hydrosol model is based on a two-dimensional

probability distribution of the wave slopes in the form (cf., H.0., Vol. VI, e
K, ":‘.l»‘
f p. 148): iy

2
p(c 1 ) = (Zno 9. -1 expl-b g
u

N Here 7, and ¢, are the wave slopes in the upwind and crosswind directions, N

, where

respectively; and oi = auU and oé = acU are the variances of ¢ and g,

* U is the wind speed. p(g,,z.) is the probability density of occurrence of a e

wave facet with slopes g and ¢ . For unequal proportionality constants, dinh

¢ u Cc

a * a_, the wave slope distribution is anisotropic. Measurements indicate p.a&
{

A
that a = 3.16 x 10~3 sec m~! and a_ = 1.92 x 1073 sec m~!, so a,/a_, = 1.65. XN

With ¢ = 0 chosen as in Fig. 1 to be the downwind direction, the distribution
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(3.22) displays the azimuthal symmetry of an ellipse with its major axis in
the upwind-downwind direction and its minor axis in the crosswind direction. "ﬂ?ﬂ?
In order to exploit the elliptical symmetry of the water surface, recall )u(.
from §2 that a direction § = (§,,£,,£3) has the components £, = (1--;12);i coséd, 'Q?“ﬂ
£q9 = (l-uz)* sin¢, £3 = y in the wind-based coordinate system. If a downward
directed light ray ' is reflected by a wave facet into the upward direction $¢§$:f
£, then it follows from the laws of geometrical optics that the wave facet %?

must have the slopes

-(5,-£1)/(g4-83)

(Al
[]

= -(52-55)/(53-55). .;‘l!!’?,o‘;é:

(o
[

(See Preisendorfer and Mobley, 1985 for a detailed development of these .%”

relations.) Then the argument of the exponential in (3.22) can be written Pyt

. 1 (51'5;)2 . 1 (gz-g'z)z .
ol 0 03 i£3-g352 O_é (53'53)2 ..fi.':”i‘:'lf

1 cos2¢ . sin?¢ \ cos2¢’ sin2¢' ey
-2 —y'2
o) {(l u2)( o2 + 32 ) + (1-u'2)( 52 + 3 ) ":,l" :::
l'.l\:'i‘g"

et
} A ":‘:l".s,:'

1
- 2(1-u2)1(1—u'2)%(°°5¢ cos¢' , sin¢ sing' )

u

Q(u',tb';u,d)) ‘:,:'49;".0,

This function clearly has the symmetries
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q(u'y2m=0"3u,21-¢) (3.23a)

q(u',0'3u,4)

q(u',7m~¢"'5u,n-¢) (3.23b)

q(u',m+¢ ' su,n+0) (3.23¢)

]

" for =1 < y' €1 and -1 £ u £ 1, and for the azimuthal arguments in the ranges
ﬁ
i
b
zg 0 <¢'" <27 and 0 €< ¢ < 27. These symmetries are associated with the
:
s symmetries of an ellipse and are illustrated in Fig. 5a.
h .
3 Since the symmetry properties of the reflected radiance are entirely
4
ﬁ, determined by the symmetry properties of the water surface itself, via the
&
§ underlying wave-slope distribution (3.22), it follows that r(a,xs;u',¢'su,¢)
oy also obeys the elliptical symmetries of (3.23). Similar examination of the
B
KX other three possibilities for reflected and transmitted light leads to the
é""
)
¥ same elliptical symmetry properties of the ¢',¢ variables in r(x,asu',¢'5u,d),
. ta,x3u',0"3u,6) and tix,asn’',0"3u,0).
&
¥
:Q The symmetries of (3.23) in turn imply that the quad~averaged
iy
|‘l
N reflectances and transmittances given by (3.19) obey the corresponding
t:'v
- symmetries
i
K
i)
I
s 4
oy f(r,s|u,v) = £(r,2n+2-s|u,2n+2-v) (3.24a)
iIn .
v = £(r,n*2-s|u,n+2-v) (3.24b) S
i w:
0
:E; = £(r,n+s|u,n+v) . (3.24¢) Pgtis
W Rt
B 2.5‘ “.
4 @
g: for all Q . and Q,, in = and specifically for r,u = 1,...,m and s
3] sy
aa s,v = 1,...,2n., The azimuthal arguments in (3.24) are computed modulo 2n, on Q&':
) 6t
“ A
n the range 1,...,2n., Figure 5b illustrates the symmetries (3.24) for the case ,ﬂh‘
; [
& of 2n = 24 azimuthal quad divisions. The indexing of (3.24) is not as lucid e
T ﬁ&?%
";: |'-l‘:'6
d e
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Figure 5.--Azimuthal symmetries of the reflectance and transmittance functions &:&:ﬁ::
looking downward at the air-water surface. Panel a represents the :"1"'5
continuous case, whose symmetries are expressed by (3.23). ' at ¢' R
represents an incoming light ray, and { at ¢ represents the reflected or ALY
transmitted ray. The four pairs of similarly drawn vectors all have the & '\
same reflectance and transmittance. Panel b represents the discrete case Wt :‘t:v.
for 2n = 24. The symmetries are expressed by (3.24). s represents a > ‘l.
quad Q.. containing incoming radiance N(yj;r,s) and v represents the quad .‘,ﬁ o
Q,, receiving the reflected or transmitted radiance N(yju,v). The four X Py
pairs of similarly shaded Qrs’qu quads all have the same quad-averaged TARer:
reflectances and transmittances. .!,:,::a:.v
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by
as the arguments of (3.23), owing to the azimuthal numbering of quads from 1 ‘ :ﬁ:ﬁ
{ [' Y
to 2n (instead of from 0 to 2n-1).* Nevertheless, a quad indexed by 2n+v is ) 3:*:::
e
the same as the quad indexed by v. For example, the quad indexed by 1l is the ; o
)
I'a‘l
same as that indexed by 2n+l. A moment's contemplation of Fig. 5b, moreover, ‘.‘9'.;::.
LML
. .C‘Q‘I ‘.l
shows that quad s, centered at og» is the symmetric partner, about the wind 3::{‘:::::
direction, of quad 2n*+2-s, centered at ®n42-g = 2T = LI ::‘;;
N . . Lt
We also note in Fig. 5b that the directions 6, = 7/2 (s = n/2 + 1) and ‘:.,l:::
AR
sl
¢, = 37/2 (s = 3n/2 + 1) are located at quad ceniers. Having quads centered :::p:c}
[ ]
on the directions at right angles to the wind (at ¢, = 0) enables us, in :"«‘,";,.,
AAGING
OO
applications of the NHM, to place the sun (or other incident light source) at ’::z:ﬁ:;::
right angles to the wind if we wish to compare, say, the differences in the :::g'#ti‘
. J
radiance distributions generated by incoming solar rays parallel to and ,0&
00N
perpendicular to the wind direction. This is our reason for choosing n ;,';‘.
’ N
Vet
even. If n is odd, then the directions at w/2 and 37/2 lie on the boundary :;"g‘é;?:‘
between two quads, which is not as convenient. ii*
h e
W l"'
The symmetries of (3.24) imply that the quad-averaged reflectance and ! ‘:::
DN
Mty
transmittance functions need be computed and stored for Q. only in the "first :'0"'0:*;
quadrant" of the unit sphere, i.e., for azimuthal indexes s = 1,2,...,52141 only "::i;::‘.;
) .'(
. . . . WK
(here is where it is convenient to have n even) and for r = l,...,m: all :::'s;::t
1
Ny
other possible values can be obtained from symmetry, as is easily seen in ::"0."!
[ ]
Fig. 5b. Thus the elliptical symmetry of the wave slope distribution (3.22) :::;;.:.;5
! "l"
'
gives a factor of four reduction in the computation and storage requirements :g;:::::,:ﬁ
(P
. . . WVt
involved with processing the r and t functions. However, as seen in (3.24), ':"gl't
the discrete indexing conventions are somewhat cumbersome. We therefore "l'i;v
o~ :a:
-\V(\
T
* The numbering of quad azimuth indexes from 1 to 2n instead of from O to 2n-1 SR,
(as would be instinctively done by a mathematician) was dictated by Fortran ®
programming language restrictions at the time the associated computer code aeh
was written. ,H.':c.‘:
o
:‘1"’:
it
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choose to retain the general notation "f(r,s|u,v)", with s and v running over
their full ranges s = l,...,2n and v = 1l,...,2n, in equations such as (3.17)
or (3.18). The symmetry relations (3.24) will, however, be used at the

appropriate time to introduce simplifications in the spectral model.

g. Discretization of the Bottom Boundary Equations

The bottom boundary condition (2.11), or

N(z3u,6) = [ du'de' N(z3u',6') el(z,bsu',6'3u,0) , (u,0) ¢ I

is discretized in the same manner as the surface boundary conditions to obtain

the following result which holds at level z of X[z,b] for all Qv in 2.3

N(zju,v) = z z N(z3r,s) r(z,bjr,s|u,v) . (3.25)
rs

For a matte bottom, r(z,b3u’,¢"'ju,¢) is given in analytic form by (2.12)

which, when substituted into (3.19), gives
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¥
3 §3 { ..
/ den s
i r "":"':‘
5 1 -, ARy
. r(z,bsr,s|u,v) = = [ dude [[ du'de'(- — u RN
q 24y Q Q T .'t"‘:h
Y uv rs ".l:k:::
.4
L
f u_(2) R
¢ .o r . ]
Tora Rt by e o
¢ uv u (1) 'n:,'u::ﬁ
: r X
RN
—
. r e
! = - = 80! %|u2(2) - w2(1) NGy
i«l n s r r :. ':c:
[) ad (M
4 "l*.:':
‘)‘ g(
' r_ ] .:'b:‘
: = - — A¢' Mlu (2) + u (1)|u _(2) ~ v (1) '
9 n' s r r r r i
il — g‘!
i IL!{
' |\ “l
3
¢ r
= - — ' ' :'.He
- Ad urAu ")
I\ % gav -,
Y XN
;o ‘.‘xﬂ:}
b )
¢ Therefore, .e.‘::‘.
K igeh
3 OO
' O
r L]
B . = - = . W
:: r(z,bsr,s{u,v) — u_ grs , (3.26) “-;N,
A "
ii : . O
. for Q__. in E d Q. in = It is to be noted that < 0 since Q__ in E ‘6‘
rs Z_ an uv ER s U, ce Q¢ Z_. ‘\a,
L} -
:: Thus the matte reflectance is a positive-valued function, the magnitude of ‘.::%;:E
Y .'
) which depends explicitly on the quad solid angle Qg .::l',:.:::
; el
b The matter of the evaluation of the air-water surface transfer functions ""7
e
. is considerably more complex than the bottom transfer function and will be S:_,,
0 Y
K Pt
p taken up in §9. Moreover, the reflectance of the lower boundary of a medium ;::"w
) Sole
X resting on an infinitely deep water layer will be considered in §l10. A
:: We have now arrived at level 2 of Fig. 2, in that we have developed a \::.,;
[y NS
: finite set of discrete geometrical model equations for the quad-averaged x{l‘
¥ '\."\
¥ radiances. v .::\"
- L J
X e
) )
A
'D
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4., FOURIER POLYNOMIAL ANALYSIS W thﬂé

: . L . Bty

In order to recast the discrete geometrical equations into a discrete 'g.:'.'g'%

spectral form, we need several results from the theory of Fourier analysis of ‘ aa}aiy*

discrete functions. This section collects the needed formulas; they will be '“3“

applied in §5. NUIMN]

a. Discrete Orthogonality Relations }2%} g
. o . . ey
We first present several formulas involving trigonometric functions whose 15.‘“§jﬁ

i [

arguments are "he discrete azimuthal angles ¢, defined in (3.1). Let NA :g?

\J
k,2 = 0,...,n. Then SO
2n { 0 if k

2 cos(k¢v) cos{f2¢ ) = {2n if k
v=1l v nif k

H o w
©
1]
[
[e]
]
=]
2=
x

)
0
Using the Kronecker delta symbol (3.6), these results can be condensed as [
=
L)

2n
-

Y cos(k¢ ) cos(26 ) =n(s, +& _ +6& . ). (4.1) i
vzl v v k+2 k-2 k+2-2n :&"F\)@:\i

Likewise we have K

0 orn

£, 2 =1,...,n-1 z’zasg?

Honw»
o
[}

] sin(ké ) sin(26 ) 0 if k
v v

2n {o if k
v=]l n if k

255

-,--_‘
L8
e

C )
e,
(o
X

which can be written

2n

VZI sln(k¢v) 31n(1¢v) = n(ék—l - 6k+1 - 6k+1—2n)' (4.2)

a7
- %C
Jﬂ?:¢1
X
Lo

S
PR

22
%

Finally we note that, for all k,% = 0,...,n, aﬁrﬁr\

T e R
Q{Jﬂ \J.n).:"\)_\-'\ ", S‘ﬁ.\.’.-‘n_‘-.’,\ Y
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2n
Z cos(k&v) sin(1¢v) =0 . (4.3)
v=1

After application of trigonometric identities and (4.1)-(4.3), we obtain the

following formulas for k,% = 0,...,n-1:

2n
vzl cos(ke ) coss(s =6 ) =n(s  + ey ¥ Sipgnpn) cos(20) (4.4)
and
2n
vil 51n(k¢v) cosl(¢s-¢v) = n(&k_l - Gk+1 - 6k+2-2n) 51n(2¢s) . (4.5)

b. Fourier Polynomial Formulas
Let fV = f(¢v) be any discrete function of the azimuthal angle ¢, where

the ¢, v = 1,...,2n, are given by (3.1). Then f, has the Fourier polynomial

representation
n - -~
£ = z [£,(2) cos(ey ) + £,(2) sin(e9 )] , (4.6)
v v v
2=0
v=1,...,2n

where El(z) and fz(l) are the spectral amplitudes, which we shall determine
below. This is the formula by which we will transform the discrete
geometrical Natural Hydrosol Model into discrete spectral form. We shall see
that the number of values of the discrete function f (namely 2n) is
determined exactly by n+l generally nonzero cosine terms and n-1 generaliy

nonzero sine terms in (4.6). The cos(2¢,) term with & = 0 gives a
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constant, 31(0), which is the average of f over v = 1,...,2n. Moreover, the

W cos(ne¢ ) term gives the "two-point oscillation," the wavelength of which is AN

244 = 2n/n. This shows that the shortest resolvable wave in the Fourier KhalM

representation is directly determined by the fineness of the directional

,
X . resolution 44 in the quad-averaging. Using the representation (4.6) for £, Eﬁﬁm
E? which exactly reproduces f , will introduce no further loss of radiance detail -ixss
3{ in the azimuthal direction when N{y;u,v) replaces f,. Since sin(2¢,) is ﬁqﬁ?
‘; identically zero if 2 = 0, or £ = n, the amplitudes f,(0) and f,(n) may be :?&5
f@ arbitrarily chosen. We therefore will define £,(0) = f,(n) = 0, which will’be

convenient for bookkeeping purposes in the computer code.

Ot

' .
) The cosine amplitudes f, (%) are determined by multiplying (4.6) by &

cos(k¢ ) and summing over v to find

2
7

: e
B o

F pmns | o[ ! ol
f cos(ke ) = (2) cos(2¢ ) cos(ko )| + (2) sin(4 ) cos(ke )| . &
v=l ¥ v =0 ! v=1l v v £2=0 2 v=] v v

S

- s
R LA T

N
X Applying the orthogonality relations (4.1) and (4.3) yields

g,

2n n

H\/ - A AN o

;\ ) £ cos(ke ) = Y fl(l)n[6k+1 * Se t Siego2n) !

‘ v=] =0 "‘.
h {
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g4
) 1 2n
£,(1) == ] £ cos(se) (4.8)
€ v v
g v=1
2 =0,0ee,n
Expanding (4.8) gives
1 2n
£.(0) = >— z £ (the average of f )
L 2n & v v
v=1
1 2n
£,(2) = Y z fv cos(2¢v) if ¢ = 1,...,n"1
v=1
1 2n v
F(n) =52 ) D7 E .
n & v
v=1

The generally non-zero sine amplitudes fz(z) are determined for £ = 1,...,n-1
in a like manner by multiplying sin(ke¢,) into (4.6), summing over v, and using

(4.2) and (4.3) to find

) 1 2n
£,(2) == ] f_sin(20) (4.9)
Yo v=1 Y

£ =1,2,.c0,n"1.

Here v, is defined similarly to ¢, in (4.7):

0 if 2 0 or 2 =n

vy, zn{l = 686,, - 68, , ) = { (4.10)
2 2t 28°In nif 8= 1,e..,0-1

Note that y, = Yn = 0 and that these values, which will be of use in later
developments, do not occur in (4.9). Moreover, in the allowed range of % in
(4.9), we have y, = ¢, = n. Expanding (4.9) and recalling our decision to set

-

£,(0) = £,(n) = 0, gives
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1 2n [
== vzl fv sin(l¢v) if ¢ =1,...,n~1 byt

[}
)
~
[
~
|

f,(n) =

|
o
L

Equations (4.6)-(4.10) bear a resemblance to the well known Fourier series

representation of a continuous function of ¢, although the two-point

@
amplitudes fl(n) and fz(n) are peculiar to the discrete case.
Consider next a function that is a linear combination of cos2(é -0 )
terms:
X
n /
gy, = g[cos(¢s-¢v)] = 120 g(1) cost(o -0 ) . (6.11)_ ot
R .
This form is motivated on the basis of (3.13k). Upon multiplying 8y DY
cos(ke ), summing over v, applying (4.4) and recalling (4.7), the amplitudes :ﬁi
4
8(2) of g_, are defined to be g
1 %“
(o) s —————_ g cos(%s ) . (4.12)
€y cos(2¢s) val 8V v )
Since 8¢y depends only on the difference o -0, rather than on o5 and ¢,
separately, we can, for example, anchor ¢g=d, to ¢ = 0, i.e., set s =1 in ,
(4.12). This will be done later in (5.5b). Dk‘j
@
We finally consider the representation of an arbitrary discrete function :5* /
AR
of two direction variables oq and L Let hsv = h(¢s,¢v); $,v = 1,...,2n. ﬂ?ﬁ*x
. bﬁ:?‘
Then we expect that hSv is of the form AT
L4
¥
51
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oy e O T A O A AL W I o s O P e SR AT D PP NIV R Ry
e e
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h = 2 2 hll(k 2) cos(k¢s) cos(2¢v)

sv

n
+ 2 z h1z(k %) cos(k¢s) sin(l¢v)

n
+ Z Y Ry, (k,2) sin(k¢s) cos(s )
+ z z h,,(k,2) 51n(k¢s) sln(2¢v) .
To find the amplitudes ﬁll(k,l), for example, we multiply (4.13) by

cos(k'¢.) cos(2'¢.) and sum over s and v to obtain
s v

2n 2n
Z Z h cos(k'¢ ) cos(k's ) =
s=l v=1 s M

n n 2n n
22 By (k) ) cos(ké ) cos(k's ) Y cos(26)) cos(2'¢v)
k=0 =0 s=1 s s v=1 v

+ 3 other similar terms.

Using (4.1)-(4.3) formally yields the first of the following defining equations:

h

11 (ky2) = . 1 Z Z hsv cos(k&s) cos(z¢v)

h

(k,2) = 2 h cos(k@s) sin(1¢v)

12 sv

(4.14)

h,, (k,2) 1 z Z b, sin(k¢s) cos(2¢v)

Ry, (k,2) = —— [ [ h_ cos(ks ) sin(is )
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Analogous operati T
at 3 : . KK §
P ions readily yield similar formulas for th ini ::.;::':':';‘
amplitudes as shown in (4.1 e remaining three '::":::.:;"
.14). The pattern of the formul N
builds precisel as follows from and ":’l‘:"':':
y on the one-dimensional case: see (4.8) Mt
all ¢ and (4-9) for th [ ]
owed ranges of k and %. Note th ) e QIS
that cosine amplitudes h . ahahak
amplitudes h ave eg, vhile sine ha
ave y, normalizers, and that e, = . :::g:c:s:sg.;g
ranges (k,2 =1 1 g =Yg =0 in the common allowed ’:‘:::c'::::fﬁ
\ yeeesn=1). The arbitrary zero amplitudes £,(0), £,(n) NN
their counter . ,(0), £,(n) now have e
parts in h. . (k,2) = r n N
12(ks2) = h,, (k,2) = _ AT
or n, as the "2" sub . . 21 4 ) hzz(kQE) = 0 for k and % e({ual to 0 :’ :::S:::E
script on h requi : Al
. quires. Thus, for future reference X ::(:ie,:,
summarize these si we X0
singular values as AN
|
('t 4‘,
ﬁ ( . :l.“z‘\':f.l
12 k,0) = hlz(k’n) = (0 ’ = 0 n :"::e&
- ygevey .‘ ‘;_:f:‘(‘%l
N DATOLH
h21(0,9-) = h21(n,1) = ( =0 lzztl!:::‘:%'
- ’ = geeeyll =
h,,(0 = f 9
22€0,0) = h,,(n,n) =0 (4.14a) .:3:}:;:;«:
h,,( o .6:0:0'::«
22(n,0) = hy,(0,n) =0 RN
XA
.*“in‘
5&' ‘Q
It will turn o .
ut that R )
when (4.14) and (4.14a) are appli - '..t'. 3
face pplied to the air- SN
surface's transfer functions i water et
) ns in §5b below, the amplitudes h - ‘.l.':d'::
will be identicall - 12(k,2) and hy,(k,2) JHR
y zero owing to certain symmetries of th A
of the surface
We now have at : ° FITRER
our disposal all of the tools n '::!;:.l._
. ecessary fo . Wty
discrete geometrical Natural H r converting the a.:;::::‘
ural Hydrosol Model in : AR
to a discrete spectr iyt
1 1 AN
P al form. "‘:":‘.":
c. Rayleigh's E : o
quality :"é' ::::;:
A check on the spectral ﬁt.::‘.::t:'
ral parts of the computer cod '(':'s’\"oiz‘:
Rayleigh-type e . ) e can be made using a '\'.:0"".:.
quality, which relates the squares of th 1 0"?:0.’
. e values f_ t
squa . . o th
quares of their amplitudes f (%) and £,(2). To deri Y © ! "t‘.:‘;
Rayleigh's . 2 erive the present form of 4
equality, we evaluate } f2 int £ N "
erms of th :
v e amplitudes, as follows: H 0"?:
@
it
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2 {2 (k) cos(ke ) + £,(k) sin(k(bvﬂ} x

1{k=0

o, v=

:I
a .
A « LY |8, (o) cos(2e ) + £,(x) sin(2¢v2] sﬁﬁﬁ
"l-. £=0 ).".'Q‘!
:42 l'::"'bl
S I'Qo(":t
: n n 2n ‘:‘Q‘:‘al
| = J E(k) £,(2) ] cos(ké ) cos(2e ) by
v v
=0 =0 v=] .

3 gimilar terms.

The sums over v are evaluated by (4.1)-(4.3). The four preceding summation

terms reduce to two:

» 2n n

u y f2= 1} X B (w) £,(2) a(s ., * ¢ + 8 ) e
! - - [
Wi v=l ¥ k=0 =0 k=2 = k+i-Zn "?’E"t

2 s} >i'(

. ] ] i
« 31 B Ee)als, -8 L =8 o) .

Only the k=% terms remain, and thereby we find the desired form of Rayleigh's

equality:

oy
-EZG 2n a : zg
A z f2 = z e £2(2) + v F2()| . (4.15) %“&&
; v = L Lot ) iyt
! v=l 2=0 ‘:,:ii‘p
s o

Expanding (4.15) and explicitly evaluating e, and y, gives an alternate useful

form

4; n-1 @

h L Z £2 = £20) + 3 T (2200 # Eg(nZ] + 22(a) . (4.16) T

R 2=1 o
\)

A Rayleigh's equality can be derived for the two-dimensional case by
y

evaluating Z Z h§v° The result corresponding to (4.,15) is
v
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5. THE NATURAL HYDROSOL MODEL IN DISCRETE SPECTRAL FORM

Transforming the Radiative Transfer Equation to Spectral Form: The Local
Interaction Equations

(X}

The discrete geometric transfer equation shown in (3.12) can be rewritten ’

.

i‘ - . + . . - 'l '.i |’b
' as separate equations for upward radiances, N (yju,v) where qu is in 2, and ﬁxq#;
et

; for downward radiances, N (yju,v) where Q,, is in E_. The + and - superscripts g
¥ kAR
of TR
» . . . - - . O]
. are now added to the radiances to denote which hemisphere, 2, or Z_, contains '%ask
B 1, t
o . . . gt
Qv (recall the discussion leading to (3.2)). In a similar fashion, a general ﬁﬁﬁ%

'!.‘n fh'

Thus for the phase

function of (r,s) and (u,v) would require two superscripts.

function p(yjr,s|u,v) we would write

"p++(y;r,s|u,v)" for p(ysr,sfu,v) if Q. in E, and in =

. fav 10 Fer T
K - . . . ’
:: "o*“(y;r,s|u,v)"  for plyjr,s|u,v) if Q. in Z, and Q,, in E_, ;':::::
X - . . . Telttege
X "p " (ysr,s|u,v)"  for plysr,s|u,v)  if Q. in Z_ and Q,, in Z,, fﬁ%ﬁ
WGt
"o~ (ysr,s|u,v)" for p(ysr,s|u,v) if Q. in E_ and Q,, in Z_.

phase function as expressed by (3.13h) implies

The isotropy of the

p (yisrys|u,v)

p++(y;r,s|u,v)

p t(yir,sfu,v).

p+-(y;r,s|u,v)

Thus only a single superscript is needed, and we shall write

"ot (yir,slu,v)" for p*lyjr,s|u,v) (= p " (yjr,s|u,v))

5 "o (ysr,slu,v)" for ptT(yir,s|u,v) (= p~*(yir,s|u,v)), P
e NN X]
! v
Y ..'..|.'
‘."..‘
...
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B
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where we have recalled the azimuthal symmetry of the quad-averaged phase
function. With the superscripted notation, the quad-averaged radiative transfer

equation of (3.12) takes its two-flow form:

+
T dN'(d;u v) . -Ni(y;u,V) + w(y) 2 2 N+(y;r,s) pt(y;r,slu,V)
rs

(5.2)

+

wly) I T N(yir,s) p(ysir,s|u,v)
r s

where now Uy > 0 and
x <y<z

u,r = l,...,m

VeS8 = 1,...,2n

and ") 2" represents sums over hemispheres indicated by the superscript on N.

Eq:ation (5.2) is a coupled pair of differential equation systems. The
upward system is obtained by taking all upper signs together. This system
describes the evolution with depth y of the upward radiances N'(yju,v). The
downward system is obtained by taking all lower signs together, and describes
the evolution of downward radiances N (yju,v). Note particularly that u, > 0
for u = 1,...,m for both upward and downward systems; the negative values of u,
seen in (3.12) are now incorporated in the Fu, notation of (5.2).

The system (5.2) is in the form of the local interaction principles or the
local form of the principles of invariance. See Preisendorfer (1965, p. 103)
and H.0., Vol. III, p. 43 Vol. II, p. 295. This pair of systems of differential
equations can be solved as it stands using boundary conditions (3.17), (3.18)

and (3.25) and applying the general tools and procedures of §6 and §7, below,

leading to the various reflectance and transmittance matrices of the body of the
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f{ water mass. However, as noted in our introductory remarks, the computation and ‘vfﬂ

storage loads accompanying (5.2) can be cut considerably by first resoiving the

Ni(y;u,v) into their azimuthal spectral amplitudes, and finding the spectral

counterparts of (5.2).

The derivation of the spectral form of (5.2) begins by noting that, for

fixed y and u values, Ni(y;u,v) as a function of v can be represented by a R

trigonometric polynomial of the form (4.6)*:

n

+ + +
d N (ysu,v) = z (a7(ysuse) cos(2¢v) + A (ysust) sin(1¢v)] . (5.3)
i‘ =0 .(!Q.(I',
ot H
' asx<y<z<s<b ‘smki
s ' l‘q.i. .“l
:? p ! §

l,000,m

1,...,2!1

We have added arguments (yju) to the cosine amplitudes for radiance, A%(y;u;z),

5 and to the sine amplitudes for radiance, A%(y;u;z), in order to show their full ™
g functional form as needed in the computations. These amplitudes, for fixed y {~'W
g and u, are computed from equations (4.8) and (4.9) given the v-dependence of Jgﬁs
Nt(y;u,v). Specifically, we have, for the case of quads: "
'l

N 2n

Y + +

¥ A(ysu3e) = 1 z N (ysu,v) costé ~ , L= 0yee0e,n (5.3a) ‘h{
3 €y v=1 bt
: u = l,noo,m-l .
M) T
K + 1 2n :'}i' W
‘i Ay (y3u3e) = oy z N (ysu,v) sin1¢v y £ = ly,ee.,n-1 (5.3b) : %;
) = ; )
) L v=l u=1l,ee.,m1 thﬁ ;

* Theoretical works on radiative transfer theory (e.g., Preisendorfer, 1965 or

” 1976) sometimes use the notation "A_(y,*;u32)" instead of "Ai(y;u;l)", that }v;
} is, they try to keep a basic symbol such as A_ free of avoidlble o
y superscripts. The present notation is chosen so that the arguments of a W
function, here y, u and %, show only those independent variables which the .‘. Y
associated FORTRAN computer code references in DO-loops. ﬁqk
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§5

Of particular interest is the 2=0 case for the cosine amplitude. This will
serve to define a generalization of the classic two-flow irradiance model (in

§8). In this case (5.3a) reduces to

+ 1 +
AT(y3u30) = [ N (y3g) da(y) (5.3c)
M a(z ) z_

u=1,...,m

where Z, is the zone comprising all quads Q = lyeeey2v foru=1,...,m1}

uv? Vv

and Q(Zu) is the solid angle content of Z,, namely Q(Zu) = 2n Q,,+ Foru-=m,

Z, is the polar cap. Thus Af(y;u;o) is then simply the zonally averaged

radiance for zone Z,, or cap Z ;. The classic two-flow irradiance model has only

one "zone'": the upper or lower hemisphere of 3. Hence the system of zero-mode

equations (5.23) below will serve to check the accuracy of the classic

irradiance model. For the polar cap case in general, where u = m, there is by

definition no dependence of radiance on the azimuthal angle ¢,, and an expansion

like (5.3) is formally trivial. To retain the useful notation in (5.3),

however, we recall the notational convention in (3.2) and define

+ + +

A7 (ysm;0) = N (ysm,-) (= Q(é ) ] N (y;g) da(g) , as in (5.3c))
m Zm
+
AT(ysm;e) =0 , 2 =1,...,n (5.4)
and
+
A5 (ysm3e) = O , 2 = 0,000,n &

Therefore Eq. (5.3) may be regarded as holding for all quads and caps, if we
remember that all amplitudes for polar caps are by definition zero, except the

cosine amplitude for the zero azimuthal wave number.
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Continuing the preliminary observations leading to the spectral form of E'g:::::::.:i::

et

(5.2}, we note that, for fixed y, r and u, where r # m and u # m, the quad- '::fn:::c.::
¢

. + . .. -
averaged phase functions p‘(y;r,slu,v) can, by the isotropy conditions .':,.‘o..‘o,‘;
sty

O
(3.13e,k), be written as linear combinations of cos2(¢,~¢,), s,v = 1,...,2n. %:::‘;:::::
O.Q‘i.ql‘g'l‘
Thus pi(y;r,slu,v) can be represented by a series of the form (4.11), namely 'da:'?a::'::

N
+ + YakYy
p (ysr,sju,v) = p(ysr,uss) cose(d -4 ) (5.5a) u‘.:%::,s"',:
2=0 S \'4 :" ‘|::‘:"

IR
x Sy <z !::*2325'.15

i t~20

ryu = 1,.-.,“‘! '.“‘f.c‘.".:‘r‘
).‘. '\“05
) ""“
- .lg.&q i
S,V - 1,.-.,2!1. ’l"'

The amplitudes f)i(y;r,u;!.) are defined by an equation of the form (4.12), namely

55 (ysr,use) = ——t fn *(ys ) cost(s_—6_) (5.5b)
p(ysryus) = W L p (ysr,s|u,v) cost 0,70 ) . .

We next consider the four cases which occur in numerical computations of
the amplitudes ﬁi(y;t,u;ﬂ.). Each of these cases is evaluated by specializing
the form of (5.5b). They are as follows:

1) Quad-to-Quad case (u,r = l,...,m~1). With s = 1, (5.5b) becomes
2n

+
L Y p(ysr,l|u,v) cos(2e ) (5.6a)
€2 v=1 v

+
“(ysr,ujg)

P

2 = 0,400,n

2) cap-to-Quad Case (r =mj u = 1,...,m~1). Then (5.5b) becomes

\ g T AN A" ) - CRE L KR B L S R R R L Ot Tl S W L N e . e "w -y . ~ "
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+
P (ysm,u;0) = p(ysm,-|u,l)
+
p(ysmyu3e) =0 , 2 =1,..0,n (5.6b)

3) Quad-to-Cap Case (r = l,.e.,m=13 u = m). Then (5.5b) becomes

+ +
p~(ysr,m;0) = p (yjr,1|m,-)

+

f’_(y3t‘,m;2) =0 ’ L = 1,..-,!’1 (5.6C)

4) cap-to-Cap Case {(r = m, u = m). Then (5.5b) becomes

+ +
p~(ysm,m;0) = p~(ysm,-|m,-)

+

p-(ysmymie) =0 , 2=1,...,n (5.6d)

Observe in (5.6a,b,c) that s or v has been set to 1, as the case may be. This
is permissible by virtue of the dependence of pi(y;r,slu,v) on v~s rather than
on v and s separately (see (3.13k)).

We turn next to the decomposition of (5.2) into its spectral components.
We split the task into two main parts: (i) the case of a non-polar-quad output
radiance Ni(y;u,v), u=1l,.e.,m1; and (ii) the case of the polar cap radiances
N:(y;m,-)..

For case (i), we now use the radiances and phase functions from (5.3) and
(5.5a) to substitute into (5.2). The sum over quads in (5.2) must now be
explicitly evaluated as in (3.2). For the present case of a non-polar output

quad, i.e., u = 1l,.,.,m-1, the radiative transfer equation (5.2) becomes
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T at(os Toiiig) s -
EZO A (ysuse) cos(2¢v) + A5(ysuse) 51n(2¢v) =

+ +
AT(ysus32) cos(Mv) + A (ysu3e) sin(ld)v) (5.7)

m=-1 2n n . .
wly) ] T ] [Al(yirse) cos(2e ) + a3(ysr;e) sin(2e )
r=1 s=1 2=0 k

+

+
p~(ysr,u3k) cosk(¢ =-¢ )
0 s v

ne-13

+
w(y) A:(y;m;o) p (ysm,u30)

m-1 2n n n -
wly) § ) Y A (ysr3e) cos(ws) + A,(y3r;e) sin(ms) Y b (ysr,uszk) cosk(@s—d:v)
r=1 s=1 2=0[_ =0

+

G e

+ w(y) AT(y3m,0) " (ysm,u30) .

- e

The second and fourth terms on the right side of (5.7) each have the form

r‘ —

m=l n n 2n

k| wly) 3 ) 1 A(ysesn) plysr,uzk)| ) cos(Ré ) cosk(e -6 )

? r=1 1=0 k=0 s=1 s sV

' Lo —

m=-1 n n [ 2n 7]

! +aly) T 1 1 Ay(ysrse) plysrousk)| § sin(Re ) cosk(e =6 )| . (5.8)
r=1 2=0 k=0 | s=1 s SV

Application of (4.4) and (4.5) to the sums over s gives

m-1
w(y)rzl % é A (y3r3n) Blysr,usk) n(s o+ 6, + 6, o) cos(2e )

2
:f’

u‘}“~ x

\
',: m-1 y \
¢ + w(y) Z 1Y A, (ysesn) plysr,uzk) nl8, o = 8 r = Spagony) Sin(re ) LAy
- r=1 ¢ k @
! 5
3 m-1 :\_’:}
Y = . e 20y . Lo,
; = y(y) Z z A (ysr3e) p(ysr,usze) n(l + 521 + 622_2n) cos(1¢v) :NL*%
) r=]l ¢ el
Pty
m-1 @

+ w(y) A,(ys3r3e) plysryuse) n(l - 6, - § ) sin(ee ) . ~
wly rzl % 2\YsT plysr,u n 2 2025’ SiD v :g':'::::
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Thus (5.7) becomes Lann

+ *
n {dAT(ys5use) dAs(ysuse)
Fu — cos(2¢v) + iy

sin(l&v)
Y 9=0

]
3
G

-
o,

n
z Af(y;u;l) cos(24 ) + Af(y;u;z) sin(26 ) (5.9) fﬁ-yql
2=0 M v AR

+

n m-1l
+ P . .
+ w(y) z z A (ysr32) p~(ysr,use) n(l + 621 621-2n) cos(1¢v) iyt

=0 r=1 ‘ ph
+ w(y) AT(Y;m;O) p*(y3m,u30) ".':;:.

n m-1 + . ®
+wly) ] ] A (ysrie) p(ysr,use) n(l -6, -6 -2n) sin(2¢v) NSNS

=0 r=1 2% 29 '-_Ff’\}‘..”‘

" * e
Z A (y3r3) p (ysr,use) n(l + 8 8y0-9y) COS(20) R

+

n
+ wly) Z 20 ¥ %2 .
=0 r=1 L

+ w(y) A:(y;m;O) ¥ (y3m,u;0) Jap

n -
+ w(y) 2 z A,(y3r3e) p (y3r,u3e) n(l - 622 - 622-2n) sin(l@v) .
2=0 r

"j e Y ﬂ

5
» "

hS ”
IO )

Y X
o
b
[
--o.l.

The polar quad terms are coefficients of cos(2¢,) for ¢ = 0, and as such they

BN
@ S0

]
<
P

s
R,

can be incorporated into the other summations. Now recalling e, of (4.7) and

Y, of (4.10), the preceding equation can be written

2
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+ + -
dAy (y;3use) da,(y3u3e)

3y cos(1¢v) + S 51n(2¢v) =

a + +
- 2 A7 (y3u3e) cos(e ) + A5(ys3u3e) sin(l@v) (5.10)
=0

n m-1
+ +
+ w(y) z 2 AT(Y“’;") p(y3r,ust) e, * At(y;m;ﬂ.) f)"(y;m,u;l)dl cos(zd)v)
e= r=1
L

-
n |m=l +
+u(y) ] Y A,(yirie) é'(y;r,u;l)vfj sin(2o )

=0 E=l

—
m-1

z A:(y;r;l) ﬁ:(y;r,u;z) €, * A:(y;m;l) ﬁ;(y;m,u;z)sl cos(2¢v)

r=
_
m-

n

+ w(y) z
2=0 1

n 1 _ :

+ w(y) 2 2 A,(ysrse) b (y;t,u;l)Yl sin(2¢v) .
1=0 |£<1

We now take advantage of the linear independence of cos(2¢,) and sin(2e,)
to observe that this last equation must hold true for each % value & = 0,...,n
for the A, and for ¢ = l,...,n-1 for the A; amplitudes separately.
Accordingly, collecting together and equating coefficients of cos(2¢,) in

(5.10) gives
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@
d ¥ .0y = —a¥(ven:
;uu E; Al(y,U,g) - AI(Y,U,Z)
m-l 4 + o+ ! Q‘
+ w(y) €, z A (y3r3e) p(ysr,uze) + w(y) 62 A (ysm32) P (ysmyust) ,
r=1
(5.11)
m=1
+ w(y) €y 2 A (y,r,l) ) (y,r uj2) + w(y) 6 AT (ysmse) p (y,m ujt)
r=1 .
XY
R
by
where x < y £ 2 g?~¥0%
u = 1,.-.,m‘1
t [
= 0,.00.yn
and u, > 0.

Collecting together and equating coefficients of sin(1¢v) on each side of T‘
(5.10) for 2 = 1,...,n-1 in (5.10) gives a similar equation for the sine
amplitudes: Q“_ )
@
L
d h 4 + O
L & Ay (ysus2) = -A5(y3u3e)
}g
m=-1 .
+ w(y) Yy 2 At L(ysr32) P (y,r,u,l) (5.12) ey
'-J,‘\(
r=1 o
RN
m=1 . ,
+ w(y) Y, Z A,(ysr;e) p (ysryu3e) -
r=1
hd
¥
W
where x £ y < z &
"
u=1l,..0.,m-1 "
Q: = 1,...,“'1 :::“ .\*
d >0 :J-:a,*
and uy : ‘."'-.S\"“A
\{‘u ’
L J
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{
@ ~ Since A3(yj;us%) = 0 when % = 0 or £ = n (recall Eq. (4.9) and the comments

following (4.6)), we can regard (5.12) as formally holding for the full range

I

gj of & values, ¢ = 0,1,...,n.

X

L

‘ We now return to (5.2) and consider case (ii), namely the case of the
LY

) pclar cap radiances Ni(y;m,-). Once again our goal is the appropriate

v"‘

k spectral decomposition of (5.2). Setting u = m in (5.2) and recalling the
K

s . .

% procedure in (3.2) we obtain

!

By

Q‘

N

.‘ -d— t 14 3 = - * b4 .

:.: FHg 3y N (ysm,-) N (y;m,-) (a)

i m-1 2n

i +o(y) J ) N Y(yir,s) p Yysr, sim,+) (b)

ﬁ r=1 s=1

¥ (5.13)
0

',’ + +

+ w(y) N (y3m,-) p~Cysm,-|m,-) (c)

ai

4

\

o m-1 2n _ .

)y +o(y) J J Nyir,s) pT(yse,s|m,-) (d)

n r=1 s=1

i\ - ¥

:: + w(y) N (y;m,-) p (y,m,-|m,-) (e)

1

o

X

ot

R Now N*(ysm,-) in line (a) of (5.13) is reduced to spectral form by (5.4).

9

? Indeed, we sze 2t once that in the present case (of u = m) there will be only
N
;, one up-down pair of nonzero spectral radiance amplitudes, namely A?(y;m;o).
K)

t Thus (5.13) should reduce to a nontrivial pair of coupled equations describing
g the depth rate of change of AJ(y;m;0) and AT(y;m;0). The reduction of term
0

} (b) in (5.13) is made via (5.3) and the quad-to-cap case (5.6c) for

d

!

' pt(y;r,slm,-). From the latter we see that the only nonzero term in (5.5a) is
.,
$ that for & = 0. Hence term (b) in (5.13) becomes

R

X

)

R
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m- n n
wly) z Z { Z [A‘:(y;r;ﬂ.) cos(ms) + A:(y;r;l) sin(ws)]}ﬁt(y;r,m;o) ..p_:.:g!.
r=1 s=1 {220 .

(b) |"t'

Moving the sum-over-s operator inward to the trigonometric functions we see 'l, q

that (b) in (5.13) reduces to ;%Er,:g

m-1 + +
wly) €, Z A (y3r30) p~(y3r,m30) (b)
r=1 .
In like manner, (c) in (5.13) becomes \

‘Q‘O.t‘!.l!’
w(y) AT(y;m;O) ﬁt(y;m,m;o) (c) ";""

0
|"‘v '
».,;' :;’.:.

y
Also in like manner, (d) and (e) in (5.13), respectively, become ""
m-1 Ab’ §E§
wly) e ) A (y3r;0) p (y;r,ms0) (d) e
r=1 Mrtadnt
and .,1;.1‘-.

w(y) A:(y;m;o) ﬁi(y;m,m;o) . (e) ':0.",&.‘;

Assembling these results (5.13) becomes
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! m-l + + + e
! + w(y) g, z A, (y3r,0) p(ysr,m;0) + w(y) A (ysm;0) p~(y;m,m;0) %*h”ﬁ
' r= l .:::’"".‘
. (5.14) il
W m-1 - _ z :::::o: N,
+ u(y) ¢, 2 A (y3r30) ' (ysr,m;0) + wly) A (y3m;0) p (y3m,m;0) PSS
¥ r=1

p——)

This is the desired spectral form of (5.2) for the polar cap case u = m.
As they stand, the set of coupled equations (5.11), (5.12) and (5.14)

consticuce the spectral form of (5.2). However, unlike (5.2), the physics

PR

they describe is obscured by being spread over a variety of different terms.

e

Nor is there ‘a suggestion as to any solution procedure other than an

¥

unceremonial dumping of the equation set into some prepackaged numerical 4\jfh

- -
e 4
2

subroutine for solution of coupled ordinary differential equations. (This

A

will not work unless the subroutine has provisions for solving a two-point .

-
»

boundary value problem and unless this two-point problem is specified with O\

care.) However, by a regrouping of the various terms in (5.11), (5.12) and th

-y T g

(5.14) we can package them in a form of some heuristic value, both physical

o
q
-

and mathematical, which will suggest the solution procedure for the complete .a&‘:

-

f:
L,

440‘

boundary value problem.

-
5

The two equations of (5.11), written separately and rearranged, become e

gy B SN,
s

A

Y,

1 ™ e e
%Y
<
[d
. - -,

A ke
P
®

>,

68
“ S
N v % 3 3 LYoo i . b2 La Oht K W W W 3 (R T " ® 5 % .
B A
!." " .! ‘.a .!‘l‘a o ::!Vn l.c L%, :&:‘; l',“..!!: o‘l I:!.l'. ‘ ¥ .'l

VTN DX AT RN k‘.';'.:hl!‘




HERSLUE SN IS R AW M WL P A VAP AW AR VU LRSI A A A U U S VU VR RS R AL RE A A WA VUL Ty I T T R N OO WO SO R U AT

§ ::':'0':‘0 s,
sﬁ

. oty 3
m=1 w(y) €y p+(y;r,u;9.) § " ::.'n o
] Al(ysrse) - R
r=1 u u |"':"“o“'(
Vit

e

d + . .
- E;.Al(y’u’“

=
=

w(y) &, B (yim,u32)

+

+
A (y3m;38)
Mu ",

A- "
m-l wly) e, B (yir,u32) ,
L Al(yirie) - ';:.ﬂ“
r=1 u '
fﬁbf
- :""'::5:::

- w(y) &, p (y3m,us3e) ““"‘th
* A (ysmit) | — (5.15)

Ha

+

foru=1,.,..,m1 and ¢ = 0,...,n, and moreover

- m-l w(y) e ﬁ-(y;r,u;ﬂ,) TV AT,
A, (ysus) 2 At ysrse) % G“l.'n.i

d

dy r=l Hu ‘:‘n k.

':".‘ 0:'
‘c't

. w(y) & p (ysm,u3a)
+ A (y3m3e) " \:'a'.':o"'a‘
u «5qﬂé§w

m-1 _ w(y) €, f)+(y;r,u;2) §
1 A (ysese) -
r=1 uu u "l't‘l'l

+ A (y;mse) (5.16) ,c.o;.";vts;

e T
foru=1,...,m1, and & = 0,...,n. ‘l\i‘\'ﬁ

The two equations of (5.12) written separately and rearranged, become i',.‘,.\:,'\
A A
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m-1 —;(y) Y ﬁ+(y’r use) &
. sT,U; -
- g— A:(y;uzl) = z Az(y;rn) L -t
y =1 Uu Uu
m-1 r--m(y) Y, p (yir,ust)
+ z Az(y;t;l) (5.17)
r=1 Hu
4 wly) v, p (ysr,use)
"d— A (y,u,,') = Z A (y,t;’-)
r=1 Hu _J
o+
m-1 wly) Y, P (y3r,us2) Gr_u
z Az(y;t;ﬂ,) - (5.18)
r=1 Yu M

for u=1,.,..,m 15 and ¢ = 1,...,n-1.

Next, the two equations of (5.14) written separately and rearranged, become

+
m-1 w(y) ¢, p (y3r,m;0)
d + oo = + [ "X °
E; AI(Yrmyo) rzl AI(Yyroo) um
.+
. w(y) p (ys3m,m;0) 1
+ A (y;m;0) - =
um U
m=1 _ w(y) ¢, p (ysr,m;0)
+ ) A(y;r;0)
r=1 m

w(y) $ (y3m,m3;0)

+ A (y;m;0) (5.19)
“m
and finally
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wly) e, p (ysr,m;0)

d .- m-1l
3y A (ysm30) = ] A[(y3r3;0)

H

r=1 m
. w(y) p (y;m,m30)
+ A (y3m3;0)
™
m=-1 _ wly) €, §+(y;r,m;0) 1
+ z A (y;r30) - =
r=1 ™ ™
o
_ w(y) p (ysm,m30)
+ A, (ysm;30) (5.20)
Hm

The quantities in the square brackets of the preceding equations are the
local reflectance and transmittance functions for the radiance field

amplitudes A%(y;u,l). We shall now define them formally in the usual fouc-

case analysis regarding quad and polar cap directions (cf. (5.6)). Our goal

is the construction of the mxm local reflectance matrix p{y;%) and the mxm

local transmittance matrix i(y;z) for each azimuthal mode & = 0,...,n and for

th th

all depths y, x < z. Let the elements in the r"" row and u-" column of

y <

these matrices be denoted by "[é(y;!)]ru" and "[i(y;l)]ru". Moreover, observe

(cf. (4.7), (4.10)) that in the range 2 = 1,...,n-1, we have Yo = €g = 0.
Then we make the definitions as follows:

1) Quad-to-Quad Case (u,r = 1,...,m-1)

(Zys]_ = (e, w(y) 7 (yse,u30) = 6 _ 1w

(5.20b)

[é(y;z)]ru CH wly) fv_(y;r,u;l)/uu

2 = 0,..4,n
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2) Cap-to-Quad Case (r = m; u = 1l,...,m=1)

[iCy32)]_ = 8, w(y) p (ysmiuse)/u ¢

(5 .20(:) a't'

(ays)]

E=0,...,n '§?‘
D 1.0'

3) Quad-to-Cap Case (r = l,...,m13 u = m)

8, w(y) ﬁ.(}';m,u;!)/uu ﬁﬁﬂq¢

0‘!\". 0'.
. '.‘t' . X
P . . I.‘ v
e, wly) P (y,r,m,O)/um ” “

a!

'l‘l'l".l.

(2(y;01

[j_(y;ﬂ.)]rm 0 forgt =1,...,n

1]

®
R
(5.20d) ,.;:,
eq wly) ﬁ-(y;r,m;o)/um a#?
o."
0 for 2 = 1,...,n .

(8Cy30)1

P e

(BCys2)]
4) cap-to-Cap Case (r = m; u = m) Q?%“a
0

[2(y30)] = [w(y) 3" Cysmms0) = 11/u

0 for ¢ l,000on

(2Cys2) 1

(5.20e) Sy

- J\aﬁ
[8(y30)] . = wly) p (y3mm;0)/uy N

[Q(y;z)]mm 0 for £ = l,.e0,n. i

With these definitions, (5.15) and (5.16) become
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( %; AT(y3u3s) = rzl AT(y3rse) (Byso)] _ + rzl A (ysrse) (B(yse)]
(5.15a)
\
d - T o+ ) T - 3
\3; A, (ysu3e) = rzl A (ysese) [B(yse)] o+ tzl A (ysr3e) [3(y50))

(5.16a)

Valid fOt L = 0,-.-,11 and u = 1,...,111-1.
Equations (5.17) and (5.18) become, on recalling that e, = y, for

1 = 1,...,n-1,

{ m m
d .+ + R - .
"G A,(ysu3e) = rZ1 A (ysrse) [E(ysed]  + rzl A,(ysrse) [A(ys30)]
(5.17a)
$
d .- T . L
Fr A,(y3u3e) = 2 Ay (ysrse) (Alyse)]  + Z A (ysr3e) [2(ys0)]
\ r=1 r=1
(5.18a)
valid for £ = 1,...y,n-1 and u = 1,...,m~1.
Equations (5.19) and (5.20) become
( d + o + N v - o
T 3y Milysmi0) = r§1 A (ysr30) [2(y30)]  + rzl A (ysr30) (6(y50)]
(5.19a)

m m
4 AL(ysm;0) = § AT(y3r;0) [8(y30)]__ + ] A (ysr30) [i(y30)] _

d
\ y r=] r=1
(5.20a)
valid for u = m only.
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We next examine these systems of equations for the two

occurring cases of azimuth index values & = 0,...,n.

WL WA T WU U WU WU WU W

O Y

§5

LT

.

WU WU IANIUYS WU

£ = 0 and the case of all remaining values & = 1,...,n.

b7 g Rt Wat Batals® ..~,.,...'-.‘i‘|."‘

naturally

These are the case for

for the case of ¢ = 0, (5.15a), (5.16a), (5.19a) and (5.20a) form a

system of 2m coupled ordinary differential equations in the 2m unknowns

A%(y;u;O), u = l,oao,mo

(y30) and §(y;0) for inspection.

i(y30) =

The matrix $(y3;0) has a similar appearance; just replace "t" by

_[i(y;O)ll’l

(2(ys01,

[_?_(y';0)11’2

[i(y;O)]m,2

For example,

RN {71 D) PR

[-i(y;O)]m-l,l [i(y;o)]m_l,z M [i(y;o)]m-l,m—l

[i(y;O)]m’m_l

It will be useful to write out the mxm matrices

[i(y;o)]l’m

[i(y;o)]m-l,m

[i(y;O)Im,m

" _n
-

p The

zero-mode cosine amplitudes can then be assembled into a lxm vector by

defining

1

AN(y30) = [(AT(y51,0),...,4%(y3ms0)]

(5.22)

Thus the system (5.15a), (5.16a), (5.19a) and (5.20a) for the case £ = 0 can

be written

d h 4
Fay Ay
X $y<z

= AT(y30) (y30) + AT (y30) p(y;0)

It is interesting to note that this system by itself, for large enough m, is
sufficient to accurately compute all the quantities needed in the two-flow

trradiance model discussed in §8.

(5.23)

(5.21)

e

B ,ﬁ

i
5

Wi
o n A
Yy

e
a2
£



Next we consider the same system (5.15a), (5.16a), (5.19a), and (5.20a)
for the case where £ = 1,...,n. By (5.4) we have Af(y;m;l) = 0 for ¢ in this

range. Moreover, by examining the definitions of [i(yj¢)]_ . and [é(y;l)]ru in

ru
the four cases above, we see that the bottom (the mth) rows and right-most
(the mt™™) columns of these matrices are filled with zeros. This suggests

defining two (m-1)x(m-1) matrices %(y;%) and j(y;%) for the case £ = l,...,n

where, for example

[(2(ys0)]) [(2Cys0]y ,  -or BGs0)]y oy

yse) = : . : (5.26)

[g(y;!!.)m_l’1 [l(y”')]m-l,z [_1;(y;9-)]m_l’m_1
The (m-1)x(m-1) matrix $(y3;2), & = 1,...,n has a similar appearance; just
replace "t" by "o" in (5.24).
The non-trivial zero-mode cosine amplitudes for the case £ = l,...,n can
then be assembled into a 1x(m-1) vector by writing
* * *
AT(y32) = [A((y3150),...,A (ysm-1352)] (5.25)

Thus the system (5.15a), (5.16a), (5.19a), and (5.20a) for the case

2 =1,...,n can be written

+
$ K030 = Al(r30) 2(y30) + A{(y30) B(y3n) (5.26)

x<y<z ; 2=1,...,n

The equation set (5.17a) and (5.18a) for the sine amplitudes A%(y;u;l),

u=1l,,.0,m1, 2 =1,,,.,n~1, can be assembled into matrix form also. We now
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o A Y
b et
gf " use the (m-1)x(m-1) matrices (y;%) and §(y;2) defined in (5.24), and for the Q%\?
"' " "r)“ d
$ . . . . . YT,
s non-trivial sine amplitude lx(m~l) vectors, we write ﬂi&j
. [
W '.Qg
i + + + pedndy
[,
:: A (yie) = [A(y3l30),...,A5(ysm=152)] (5.27) %g; L,
(. ) )
) N is
¢ )
;K Then we obtain from (5.17a) and (5.18a): ;%g:'
' ,;-".'-.Fr
A T
;; d + + ¥ :;:;ﬁ.
Ry T e Ay(yse) = AS(yse) ilyse) + A (y;52) a(yse) (5.28) v
@
Al‘ Tl
::: x<y<z 3 &=1,.0.,0-1 hy
4 A
W AN
:‘| “-)le
y Equation systems (5.26) and (5.28) give all the required azimuthal c?;r~
! information needed to study the shapes of radiance distributions in natural fﬁﬁ%
' SN
Gt
4 hydrosols; while as already noted, (5.23) contains the information on scalar ;;ﬂ\a
A% -

g

irradiances and horizontal irradiances.

n

"

%
%7

Observe that the sets of equations (5.23), (5.26), and (5.28) govern

3;0 ey
ﬁ: individual azimuthal modes & = 0,...,n. This permits a considerable savings ?- ,
- in storage requirements during a computation of the amplitudes for each mode;
i? and in fact this is the reason for going from the relatively aesthetic set
?' (5.2) to the total collection of amplitude equations, above. We note that the g&k»
" total number of nontrivial radiances in (5.2) is 2(m~1)2n + 2 = 4mn - 4n + 2, ¥:::'
iz where the "2(m~1)2n" term tallies the quads and the "2" is for the polar caps éi;:t
%, (for which the v index is unneeded). These 4mn -~ 4n + 2 radiance equations :E§:€
;; must be solved simultaneously. Equation (5.23) governs 2m amplitudes, (5.26) Eifﬂ
»
ot governs 2(m-1)n amplitudes, and (5.28) governs 2(m-1)(n-1) amplitudes, for a :Rén
%: total of 4mn - 4n + 2 amplitudes. Thus the "information content' is the same Siﬁu;
% for either the "radiance" or the "amplitude" formulations but, as just noted, 3€§¢‘
Ei the amplitude equations can be solved as a sequence of smaller systems of i:;:
‘ equations. jﬁf:ﬁ
) /4
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Much of our discussions below and, indeed, even the programming of the
theory, will be materially simplified if we cast (5.23), (5.26), and (5.28)
into a commonly dimensioned algebraic mold. Moreover, we recover a measure of
beauty lost while spectrally decomposing (5.2). This simply entails filling
out the Ix{m-1) vectors A;(y;l) in (5.25) and (5.27) to become lxm vectors
with zero mth components. Moreover the (m=-1)x(m-1) matrices in (5.24) receive

an mth row and an mth

column of zeros compatible with their four-case
definitions, above. When this is done, (5.23), (5.26), and (5.28) become

expressible in the unified form

d . * * - 7 A
' Iy ép(y;z) = ép(y;l) 2(yse) + ég(y;l) 8(y;e)

where p = 1,2

i

2 = 0,004,n (5.29)

E]
IA

y £z

a.

+ + +
an é;(y;l) = [A;(y;l;l),...,A;(y;m;i)]

These equations are the local interaction equations for the radiance
amplitudes. Henceforth, whenever (5.29) is referred to, it will be assumed
that all vectors and matrices involved are m-dimensional. There is only one
exception to this conventionj it occurs in §10; and the reason for the

exception is discussed there.

b. Symmetry Implications for the Spectral Form of the Surface
Boundary Reflectance and Transmittance Functions
The discrete gecmetric boundary conditions at the water surface are given

by (3.17) and (3.18). These equations involve four quad-averaged reflectance

and transmittance functions which have the symmetries expressed by (3.24).
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7. 1 “
K For fixed non-polar indexes r and u, i.e. where r #+ m and u # m, these o

: {
L} A
[ . . . . o< "J‘
reflectance and transmittance arrays can be viewed as discrete functions of Path Ve
| . ,l ia” o1
: the azimuthal angles ¢, and ¢,. As such they can be represented by an '.::::":::(
¥ (",t":f“-
. hHlnte
; expansion of the form of (4.13). Thus for example, :;::sn::'.t:‘
| ¥, 4

n o OHARR]
! t(a,x3r,s|u,v) ) t..(a,x3r,kfu,2) cos(ke ) cos(%e ) Y
k=0 2=0 s oy’

+

n n
) t,(a,xsr,klu,) cos(ke ) sin(Le ) 2
« k=0 2=0 3
(5.30) a".{:f.?

n o qso,‘.g'f
z t,,(a,x5r,kju,s) sin(kcbs) cos(2¢ )

k=0 2=0 !,:"

-
+

n n |
2 2 Ezz(a,x;t,klu,g,) sin(koe ) sin(2¢_ ) , oy
k=0 =0 s v .v“'

+

where the Eij(a,x;r,k]u,l) are given by equations of the form of (4.14). .?l;!’,'f
The symmetries expressed by (3.24) lead to a considerable simplification e

. . Y,

of (5.30). Consider for example the t,, term patterned after the h;, term of ﬁ.:":i'

(4.14): %!

2n 2n WA

tlz(a,x;r,klu,l) = sly 2 z t{a,x3r,s|u,v) cos(kcbs) sin(9.¢v) . 1"*’
k'e s=1 v=1l .~‘~* |:i"

Sk

By (3.24a) we have Y,

. 1 2n 2n R 0uEY
t,,(a,x3r,klu,2) = = 7 Yy ) tla,x;r,2n+2-s|u,2n+2-v) cos(%s) sin(26 ) . P
: k'L g=] v=l d

Changing summation indices to s' z 2n+2-s and v' = 2n+2-v gives "

2 2 4

N R 1 Y
; t,,(a,x3r,k]u,t) = z t(a,x;r,s'|u,v') cos(ké __1) sin(2e o) Vo'
e WL s'=Znsl v'=§n+l A Zn+2=s 2n+2-v NN

v/
CN AN
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Since ¢9n49-y = 27 ~ ¢, and by the evenness of the cosine and the oddness of ¥ é.ﬂ'
the sine we get IQLHQ‘(
e
sy
2 2 R
- . 0

t,,(a,x3r,k|u,2) = el Z z t(a,x;r,s'|u,v') cos(k¢s.)[-51n(2¢v,)] . '“ﬂﬂﬂ n

k'e s'=2n+l v'=2n+l a ~
"‘
Noting that quad s = 2n+l is the same quad as s =1 (cf., Fig. 5b) and .("' ."

reordering sums we find
1) 1‘| 1
2n 2n 'l:::. ..“"

. . «“r
tlz(a,x;r,k|u,9.) = - sly 2 t(a,x;r,s'|u,v') c05(k¢s.) s1n(9.¢v.) !“
k'2 s'=1 v=1

- Elz(a,x;r,k|u,9.) . .3—\"».

Therefore it follows that AN N O

x
5
T

Elz(a,x;r,klu,z) =0, (5.30a) s

for ru=1,...,m and k,% = 0,...,n. -4."‘»\
An identical analysis shows that E“(a,x;r,klu,l) = 0, over the full r,k, u,? }"\.“:}_(
ranges, and the same results are found for the other three reflectance and £~
. . . S
transmittance functions. Thus the bilateral symmetry of the surface about the ;\.:I.H:-‘; :
. . - . ‘ ‘- $
wind direction eliminates two of the four terms in (5.30). P:'-‘,._i b

Another important simplification is obtained from (3.24b). Consider the T

o
x4
A "

Il

evaluation of the t,; term in (5.30) using the pattern of the h,, term in ,

i _5 2.7
T
200,

At

r
s

(46.14):

% "

. "'n
P s
2
Iy

£
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2n 2n

ell(a,x;r,klu,l) -1 z 2 t(a,x3r,s|u,v) cos(k¢ ) cos(l¢ )

k % s=1 v=1

2n 2n

k 2 s=1 v=1

where the last equation results from the application of (3.24b).

summation indices to s' z n+2-s and v' = n+2-v gives

2-n 2-n

- 1
tll(a,x;r,klu,z) = z z t(a,x3r,s'|u,v") cos(k@n+

¥y s'=n+l v'=n+l

wherein a nonpositive value of s' references quad s'+2n, as is illustrated in

Fig. 5b. Since Ppe2~g! = Tdgr we have
k
cos(ké ,o_ 1) = cosk(n=6_,) = (-1)" cos(ke_.)

and our last equation for t,, becomes

2-n 2-n

Ell(a,x;r,klu,l) = 2 z z t(a,x;r,s'lu,v')(—l)k cos(kd’s‘.)(-l)g~

k®% s'=n+1 v'=n+l

which upon reordering the summations becomes

2n 2n

t,, (a,xsr,klu,2) — b

= (-l)k#l Ell(a,x;r,k]u,l) .

Therefore it follows that

(a,x5r,kfu,2) = 0 if k+2 is odd,
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and ryu = l,...,m and k,2 = 0,...,n. Mty

The symmetry expressed by (3.24b) thus eliminates the need to explicitly ey

compute one half of the t,,(a,x3r,k|u,%2) matrix elements. Corresponding A

O]
0"'3“.!"‘_‘
. oy L MU I
results are obtained for t,,(a,xjr,k|u,2) and for the other three reflectance 6f2ﬂd§¢§

and transmittance functions. g,

The elliptical symmetry of the wind-blown water surface clearly results !#gk
in a major computational savings in the treatment of the surface boundary. We :@ﬁgﬂgghg
can also simplify the notation to one subscript for ¢ and t functions, e.g. e
El(a,x;r,k|u,2) s t;,(a,x;r,k|u,2) in (5.23), since the cross product terms $bd

Wy
are zero. Equation (5.30) then can be replaced by .kaﬁksﬁ

iVt
| D | e
t(a,x3r,sfu,v) = t,(a,x3r,k|lu,t) cos(ke¢ ) cos(2o ) QOO
k20 20 s v .'::':.':::::::;:;

(5.31a) sty

n n
+ Z z Ez(a,x;r,klu,l) sin(ke ) sin(2¢ ) NN
k=0 2=0 s - v ‘,.;.:::; "

where ;f_fl bt

F § e o
t(a,x3;r,slu,v) cos(ké ) cos(2¢ ) B )
‘K2 s=1 v=1 s v '2‘.'\‘.5::%

El(a,x;r,klu,l) = 1

for k,!.=0,...,n ) e

N
&
P
S

and where

. 1 2n 2n
t,(a,x3r,k|u,2) =¢ —— 2 t(a,x;r,s|u,v) sin(k@s) sin(2¢v)
WYy s=1 v=l (5.31b)
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if k,2 = 1,...,n-1

oA
-’
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0 if k

"
o
-
©
!

= 0y400yn ) @
T

0 if 2
\

H
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=
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0,...,n
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These equations are patterned after (4.14) and hold for all u,r = 1,...,m;
moreover, 61 and Ez are zero when k+% is odd, as noted above.

It will be convenient for future reference to explicitly consider the
four main cases of (5.31b) for the r and u variables. These cases are the
four possibilities of whether the initial and final indexes are associated

with quads or with polar caps. Thus we have the

1)  Quad-to-Quad Case {u,r = l,...,m~1). Then (5.31b) is unchanged:

and

X 1 Zn 2n
t,(a,x5r,kfu,n) = ]} Z t(a,x3r,s|u,v) cos(k¢ ) cos(Le, )
€kfg s=1 v=l
for k,8 = 0,...,n
(5.31c)
. 2n
tz(a,x;t,k|u,l) H ?—?— z z t(a,x3r,s|u,v) sin(k¢s) sin(l@v)
k'2 s=1 v=1
if k,2 = 1,...,n~1
0 if k =0, % =0,...on
@ 1f 2 =0, k =0,..04n
2) Cap-to-Quad Case (r = mj; u = 1,...,m-1). Then (5.31b) reduces to
A 1 2n
t,(a,x; m,0fu,2) = = z t(a,x3m,|u,v) cos(Ls )
e v
L v=l
£ =0,0..yn
. k=1,...4n
t,(a,xsm,kfu,2) = 0 (5.32)
£ = 0,...4n

t,(a,xsmklu,2) 2 0 k,2 = 0,...,n

m
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The amplitudes in (5.32) give rise to the representation s !:

¢
1§ D N
n u'.:::":‘.:.:.
t(a,x;m,-ju,v) = § € ,(a,x3m,0]u,) cos(2é ) (5.33) :::":'.::!'.'%‘
2=0 Q.::ﬁ,:"q,l' ;
JA-‘
3) Quad-to-Cap Case (r = 1,...,m~13 u = m). Then (5.31lb) reduces to !,',
S
Rty
. L & e
t,(a,x3r,k|m,0) = - Z t(a,x3r,s|m,-) cos(kcbs) ..‘!.ﬁ!,}',
k s=1 )
ﬂ St
k = 0y,e00yn ‘:"“::’.
o'ﬂ"‘
q
N k = O’...’n %"ﬂ.
tl(a,x;r,klm,n.) =0 (5.34) ',‘;l .H
L = l,oo.,n
"‘3
) M. .::‘.
: i
tz(a,x;r,klm’l) = 0 k,l = 0,:..,“ " . .::
: ~NJ
n W]
The amplitudes in (5.34) give rise to the representation &; X ,:
AT
:::(.'\ Sy
- )
t(a,x;r,s|m,-) = kZo.tl(a,x;r,kIm,O) cos(k¢s) (5.35) , ;.::E:::i,‘-:
< ‘l.ﬁ.
R
)
4) cap-to-Cap Case (r = m; u = m)., Then (5.31b) reduces to “ ," ‘

El(a,x;m,OIm,O) s t(a,x3m,-|m,*) )

t, (a,x3m,k|m,2) = lyeeeyn p (5.36)

]}
o
-e
=
-
=
[}

- ~
tz(a,x;m,klm,l) k,2 = 0,...,n g
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The formulas (5.31c)-(5.36) for Ep(a,x;rgklu,l) form the requisite pattern for

the remaining three transfer functions of the air water surface: ™
ep(x,a;r,klu,n), ip(a,x;r,klu,l), and ip(x,a;r,klu,l), p = 1,2. Except for e

-
"nen

"a" "x" and going from "t" to "&", the ity

the switches of position of "a" and
patterns set by (5.31)-(5.36) are identical to the patterns found for the
remaining three cases.

¢ '5::'1:"!"
C. Transformation of the Surface Boundary Conditions to Spectral Form

We are now in a position to transform the discrete geometric boundary )

conditions (3.17), (3.18) and (3.25) into a discrete spectral form. The same ARty

general procedure as was used on the radiative transfer equation in §5a is
ALK
applicable. We shall illustrate the process with eq. (3.17), which can be s

written as : ity

- m-1 2n _ _ Y0y
N (x3u,v) = z 2 N (ajr,s) t(a,xjr,s|u,v) + N (a3m,-) t(a,x3m,-|u,v) 3#*‘
r=1 s=1 R ¢
(5.37) e
m-l 2o + "‘9
+ z z N (x3r,s) r(x,a3r,s|u,v) + N (x3m,:) r(x,a3m,:|u,v) .
r=1 s=1 )
Once again we must treat the polar cap terms explicitly. The radiances can be Eﬁ?‘
S

represented as in (5.3), and the r and t functions can be represented as in

(5.31a). Then for u = 1,...,m-1 (5.37) becomes

WY

e
A AGAAT AR AT N PO,
'\J"\v..\v\:'.'\'. -J.'\_.NJ_\...::'_\.
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'§5 SRR
N
OO R
[ N
2 - - . ?‘:‘ "‘:}-.t”
Y 1Al (x3u3e) cos(2e ) + A,(x3u32) s1n(2¢vE] ’x*yﬂg A
=0 X {(;’.
m-1 2n n _ .
= z z z E (a’r’k) COS(kd) ) + A (a,r’k) Sln(k¢ﬂ N; ‘:‘(
r=l s=1 k=0 ! ';.;
(5.38) WIS
W
n n .zch%:‘
x Yy Y t.(a,xsr,k'|u,0) cos(k'e_) cos(1e ) + LELAND
k'S0 220 AT
.::[\ "é:
AN
+ z z t ,(a,x3r, k' |u,2) sin(k' ¢ ) sin(%¢ )} k:g; '(:a;
k'=0 2=0 s ,;f
. L)
- n PR
+ A (a3m30) z t,(a,x3m,0[u,2) cos(ge ) s N
=0 v l'::!‘q'@f
A
bt
""}(w
+ a similar set of terms in A and t(x,a). AR
R
et
Note that the polar cap terms have been represented by the appropriate Eqs. . ;?,“
nd’. Q“t
(5.4) and (5.33). The first term in the right side of this equation can be BXE 2
d (
regr n S,
grouped as ~*i¥; ¥
el
e
m~1 - . 2n ;\:{}g !
z z Z 2 {Al(a;r;k) tl(a,x;r,k'lu,l) z COS(k¢s) COS(k'@s) cos(2¢v) a2 0NN
r=1l k k' ¢ s=1 o meiew
tes o
— it
2n 7] AR
- . OQOKA
+ A,(ajrsk) t (a,x3r,k'|u,n) z sin(k¢s) cos(k'@s) cos(2o ) ;5 Eﬁ%ﬁ&
S=1 Fa it 1y 3.%
— - AR
- N [ 2n 7] ?’/"!w
+ A (asr3k) t,(a,x5r,k'|u,n) Y cos(k¢ ) sin(k' o )| sin(2e ) 5;'0 d&&
(s=1 __j :‘;".}- )
— N
- . 2n N RPN
+ A,(ajrik) tz(a,x;r,k'lu,l) z sin(k@s) sin(k'¢ ) sin(2¢v) . Paratts
s=1

Using the orthogonality conditions (4.1)-(4.3) on the sums over s reduces this

expression to
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m=1 ; |
tzl E E' % {Al(a;t;k) t,(a,x3r,k'|u,2) D8t * Sopr * 8 ei!—on) COS(20.) ﬂd;‘ J

ParLE

+ Ay(ajrik) €,(a,x5r,k' |u,e) nls -8

k+k'-2n) Sin(2¢v)}' \ &N

kk' T Skt

The Kronecker &§-functions force k' = k, leaving €, and vy, factors, so that

(5.38) becomes 'éﬁ‘

7 A (x3u38) cos(Le ) + Y A,(x3u3) sin(26 ) hehy
£ L : i

(5.39) cogfap

=
&
S

|
2

-1
= z Z E A (a3rik) £,{a,x;r,k|u,2) g, * A, (a3m;k) t,(a,x3m,k|u,) 8, cos(l¢v)

3

—

=
2}
) K

-

—
e g |
v,"
]
y]
I’{

P

¥

gl |
f:@?‘z'

+
o~
nes14

"
L2,

. E A;(a;t;k) Ez(a,x;r,k]u,l) Y sin(£¢v)

Ay

1S
I

A

7oL

o . . + ~
+ a similar set of terms in A" and t(x,a).

X
~

o
e
"
X
S

S

We now once again call upon the linear independence of the cosine and sine

functions. In particular we can in (5.39) equate the coefficients of cos(%¢,)

to get, after reordering the r and k sums,
A:(x;u;l) =

) { Y A (asrik) € (a,xsr,klu,0) € * AL (a3msk) €, (a,x3mkfu,8)8,
k =1
(5.40a)

m-1
+
{ E A (x3e3k) £ (x,a3r,k|u,n) e * AT(x;m;k) t (x,a3m,k|u,n) Gk}.

This expression holds for u = 1,...,m=1} 2 = 0,...,n.
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We return now to (5.37) to take care of the polar cap case, i.e., the case of §3& X z

e
u = m. Setting u = m in (5.37) and recalling what happens in this case (cf. (5.4), R e
(5.35), (5.36)), we have the present version of (5.38): t?“éf?

e

-1 2n( n _ _ R
[A,(a3r;k) cos(ke ) + A,(asrik) sin(ke )] M
1 s21 k=0 s : s ‘
r= s: -

.

+ A (a3m;0) €,(a,x3m,0|m,0)

A:(x;m;O)
T
g : ] ' :'):'3:'!{
Z=0 t,(a,x;r,k |m,0) cos(k ¢s) 49 “.;‘:::.:;:

x

@
ek

« . . +
+ a similar set of terms in A" and r(x,a)

Rearranging this to use the orthogonality properties of the trigonometric R ey
functions, we find st s !
m-1 2n

A (asrik) ¢ (a,x3r,k'|m,0) cos(ke ) cos(k'd ) it
T e & Doy B

A:(x;m;O)

+

2n . N
A,(ajr;k) El(a,x;r,k'(m,O) 21 sin(kQS) sin(k'¢s) } st
s=

+ A (a3m;0) t,(a,x3m,0|m,0) &
.. . +
+ a similar set of terms in A  and r(x,a)

This reduces to %$i15f\‘;

! %gﬂﬂ

) .':':‘:'"
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A (x3m;0) = Rt

m=1 _ A _ R WA
‘z A (asr;k) sktl(a,x;r,klm,O) + A, (a3m30) sktl(a,x;m,klm,O) &r“é%
k=0 { r=1 nad]

rhs

o~

m=-1 . + : ."'.“(

Z A (x3r3k) ekfl(x,a;r,klm,O) + A, (x3m30) kal(x,a;m,klm,O) p
k=0 { r=1 SR
(5.40b) LN

+
0~

Now define the (r,u) elements of an mxm matrix él(a,x;k|l) via pe

ekﬁl(a,x;r,k|u,1) for r =1,...,m=1

[él(a,x;kll)]ru

(5.41) ,‘v

Skﬁl(a,x;r,klu,l) for r=am, e

and for u = l,...,m 3 k,%t = 0,...,n

with corresponding definitions for the other three #; and t,; matrices. Note ®

that (5.32), (5.34) and (5.36) imply that many of the matrix elements of “vaﬁ“i
vl

(5.41) are zero for ¢ =1,...,n. A

The amplitude equations (5.40a,b) then can be written

m
A (x3u3e) = ) Y A (ajr;k) él(a,x;klzz] 3?&%(‘
k { r=1 ru ﬁ\ )

m o,
+ 70 ) A (x3r3K) i-l(x,a;k|9,2| )
= ru

“w
A
g Wi

which hold for u = 1,...,m and ¢ = 0,1,...,n. Using the full lxm vectors of

amplitudes defined as in (5.29), these equations and hence the spectral

version of (5.37) for the cosine amplitudes can be placed in the matrix form

_ n n - .
(x32) = ) AL(x3k) £,(x,a3k|2) + ) A (ask) £ (a,x3k]e) . (5.42)
k=0 k=0

A

=1

(k+2 even) (k+% even)

88




[ The notation "k+% even' on the sums reminds us that, as was seen in the
| preceding section, those t and t terms for which k+% is odd are identically
zero and need not be included in the sums.

Table 1 displays the pattern of zero and non-zero elements in the
matrices defined by (5.41) and used in (5.42).

Equating the coefficients of sin(2¢v) in (5.39) gives an equation
for é;(x;l) which has the same form as (5.42). Moreover, recall (cf. (5.4))
that A3(x3m3%2) = 0 for & = 0,...,n. We can then define the mxm matrix

to(a,x;k|2) via

X forr=1,...,m-1
) thz(a,x;r,klu,l) and £ = 1,...,n-1
[c,(a,x3k|2)] = (5.43)
0 for r m
and ¢ = Qor 2 =n

and for u=1,...,m ; k =20,...,n

with corresponding definitions of the same form for the other #, and t,
functions. Table 2 displays the pattern of zero and non-zero elements in the
matrices defined by (5.43).

Thus (5.37) and hence (3.17) reduce to the following pair of matrix

statements:

n n
AT(x32) = § AT(x3k) £ (x,a3k]|2) + Y AT(azk) £ (a,x3k|R) (5.44)
-P k=0 P -p k=0 —-pP -P

(k+% even) (k+% even)

where p = 1 or 2 and ¢ = 0,...,n.
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With a corresponding development, the surface boundary condition (3.18)

in spectral matrix form becomes

n n
A'(a32) = y AT (x3K) & (x,a3k[2) + ] A (ask) £ (a,x3k|2) (5.45)

(k+2 even) . (k+2 even)

where p = 1 or 2 and 2 = 0,...,0.

Equations (5.44) and (5.45) are the desired spectral forms of the surface
boundary conditions and are at a notational level equivalent to the radiative
transfer equation (5.29).

It should not be overlooked that when the upper boundary is involved, the
amplitude for one &-mode is directly coupled to the amplitudes for all other
f-modes. Thus in (5.44), é;(x;l) is determined by sums over k involving
é;(a;k) and é;(x;k) with k = . This coupling of %-modes is a consequence of
the anisotropy of the upper boundary. In contrast, we recall from the local
interaction equations (5.29) that, within the isotropic water medium (i.e.,
over the depth range x < y < z), the amplitude for a given %-mode is
independent of the amplitudes for other k-modes, k # &. If the upper boundary
were isotropic, symmetry would cause the sums over k in (5.44) and (5.45) to

th

collapse to single terms for the - modes, i.e., the f-modes would

decouple. This is the case at the bottom boundary.

d. Transformation of the Bottom Boundary Conditions to Spectral Form
The isotropy of the bottom boundary means that the quad-averaged
reflectance r(z,bjr,s|u,v) depends azimuthally on |s-v|, not upon s and v

independently, for non-polar quads Q. and Q In particular. the azimuthal

(TRt

dependence is on cos(os-¢v), as was the case tor the isotropic phase
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function. Just as for the phase function (recall (5.5)) we can represent ' Qﬁk‘ d

| r(z,bsr,s|u,v) by the form (4.11): Pyt

x

e~z

o
4 r(z,bsr,sfu,v) = ) £(z,bsr,u2) cost(s -¢ ) (5.46) -:'»:;.‘
: 2=0 s v Q'
) ‘qhu

which holds for all Q. in Z_ and Q,, in ., and where from (4.12)

2n -:.’:q-? "
1 e
z r(z,bsr,s|u,v) cos(l¢v) . (5.47) RA

t(z,bjr,u|l) 3 —————=
€, cos(2¢s) vl

We now evaluate (5.47) by going through the four main cases, as in

(5.6a,b,c,d): .

Quad~to-Quad Case (r = l,see,m-13 u = l,...,m~1). Then with s = 1, (5.47) s

: becomes

L4

14
AT
v
.‘ﬂ. e

v T

2n
‘ t(z,bjr,ufe) = L z r(z,b3r,1|u,v) cos(2¢v) (5.47a)
E €4 v=l
1 £ =0,...yn

i N0
!'l
l'
[#
A A

b el

A
AARY
Ly i';("

<
I

Iy

-

%

Quad-to-Cap Case (r = l,...,m=1; u = m). Then (5.47) becomes

i(z,b;r,m[O) r(z,bsr,1|m,-)

(5.47b) ey

K
l,...,n _\"_\""A'.

]
o
Py
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Cap~to-Quad Case (r u=1l,eee,m1)., Then (5.47) becomes Qviats

"
2

#(z,b3 m,u|0) = r(z,b; m, - |u,1) 5*‘.”¢w

0“
(5.47¢) i

#(z,bsm,ul2) =0 £ = 1,..0,n it

PO RS PR,
Cap-to-Cap Case (r = mj; u = m). Then (5.47) becomes N )

"

g
5

#(z,b3m,m|0) = r(z,b; m,+|m,")

CT el

Py
T

27

(5.47d)

[
o
S
b’:‘r

2 =1l,.c..,n

b

s
8

#(z,bsm,m|2) =

,_(,,‘
- 4
)

When the bottom boundary condition (3.25), viz.

aZT L
- ...‘-
R
%&-
el

N+(z;u,v) = z z N (z3r,s) r(z,bjr,s|u,v) , (5.48)
rs

V‘%
T

%
A

T

is rewritten for u = l,...,m-1 using (5.3), (5.4), (5.47) and the specific ﬁ»fgfﬁ;

cases of (5.47), we have .




m-1 2n| n
Z A (z3r3k) cos(k¢ ) + A
r=1 s=1|k=0

+ A:(z;m;O) t(z,b3m,u|0)

+ A (z3m;0) #(z,b3m,uf0) .

The sums over s can be reduced by (4.4

+ A (z3m30) £(z,b3m,ul0) .

The Kronecker deltas leave only terms

e

k.: " 0 "'& 'r‘.;. %\Fﬁ&'\"""ﬁ :wa,:'_.«,\u*

\*-. w,;:
¥ ) \ vl' LANCE
". .|.mn‘."l:“l' WAANAAA l...l'0 » I" "i (8, NS \. ‘\"-‘.\. AN le 9, kﬁ’"' W, ‘ N \ ’s‘* w". X

c L
w1 20 ] i
(¥

becomes
m-1 _
Y z A (z3rik) § #(z,b3r,ule) n(8, ., + 8 + 6
r=1 k %
m-1 _
+ z 2 A,(z5r3k) z t(z,bjr,ule)
r=1l k 2

so that we have left just the following for u = l,...,m-1:

2 + + f:'fx. ";
) El(z;u;ﬂ.) cos(26_) + Ay(z3u3e) sinwvﬂ PO
2=0 e

LYo 'QK*

n
(z3r3k) sin(ko ][Z £(z,b3r,u|L) cosl(¢s-¢vﬂ RSty din
2=0

(5.48a) k"‘ '

= z Z A (z3rik) Z t(z,bsr,u|2) z cos(ked ) cose(e -¢ ) AN
r=l k ' L _s_=l s M S__ ":.'::3%.::.::;
{1 %
m-1 _ 2n 7
+ z z A,(z3r3k) z t(z3bsr,ulg) Z sin(k¢s) cos£(¢v-¢s)
r=1 k L [s=1 _

) and (4.5) so that the right side

k=2 k+1-2n) cos(l¢v)

- - - AR
M8 g 7 Siwn T Siagozn) sin(iey) AR

‘
with k = ¢, with ¢, and vy, multipliers, \J
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n

+ .
Y |al(z3u30) cos(ge ) + A;(z;u;l) 51n(2¢gZ] f}nv:'
=0 : ¢

n ml —_ _ 'y
= z z A (z3r;32) #(z,bjryul) &y cos(2¢v) + A (z3m;2) t(z,b3m,ulL) 6;] s "
2=0 r=l Y
(5.49) T
nomclo_ helials
+ ) Y A,(zirie) #(z,bir,ulg) v, sin(2e.) . o
=0 r=1 PP iAT

For the case u = m, we return to (5.48a), set u = m, recall (5.4) and "

(5.47a-d), and find Py
s

2n 2n

) cos(ke ) | + A,(z3rsk) | )
s=1 s=1

n
A(z3m30) = § ) {A:(z;r;k) sin(ko ) } Qo

x £(z,b3r,m|0) + A (z3m30) #(z,b3m,m|0) !
1 RS

-
= z A, (z5r30) ¢, Q(z,b;r,mlO) + ®
= A

+ A (z3m30) £(z,b3m,m|0)

We can now define the mxm matrices ip(z,b;l) for p 1,2 via N

lyeee,m-l -.).J.__‘? ]
(5.50) '.
Glf(z,b;m,ull) for r=m RS

eli(z,b;r,ull) for r

(2,(z,b50)]

and for u = l,...,m § & = 0,...,n

for r = 1,...,m-1
571f(z,b;r,u|1) and £ = 1,...,n-1
[£,(z,b52)] = =
‘0 for r = m
and * = 0 or £ = n (5.51)
and for u = l,...,m.
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These definitions hold for u = 1l,...,m, keeping in mind (5.47b,c,d) for the
four main cases. By means of these definitions, Eq. (5.49) then can be

written for u = 1l,...,m~1, and also for the case u = m, as

n

)) {At(z;u;l) cos(2e ) + A;(z;ugﬂ.) sin(%v)}

=0
{ z A (z,r,l)[ (z,bs l] }cos(w )
=0 M
n m '
+ z z Az(z;r;l)Ez(z,b;lﬂ sin(ltbv) .
220 |r=1 e

Using the lxm amplitude vectors of (5.29) we find

| ~13

n n
= ZO A (231) £,(z,b32) cos(e ) + zo A,(z38) £,(z,b52) sin(2e ) .
= =

Invoking the linear independence of cos(%¢,) and sin(2¢,), we obtain a matrix

equation for the spectral form of the bottom boundary condition:

At (z32) = A (z32) £ (z,b32) (5.52)
Zp Zp p

where p = 1 or 2 and ¢ = 0,1l,...,n.

Equation (5.52) is the general spectral form of the lower boundary
condition (3.25). Under assumption (3) in §la, the lower boundary is
azimuthally isotropic. Hence, unlike the surface boundary conditions (5.44)

and (5.45), the bottom boundary condition exhibits decoupling of the
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t-modes. There are two cases we consider; a matte surface and a plane surface
above an infinitely deep homogeneous hydrosol.
We recall from (3.26) that for the special case of a matte bottom,

r
r(z,bsr,s|u,v) = - —u8 . This function in (5.47) leaves just

1 r. 2n r,u=l m
A . T — - —— 1 g eeoey
r(z,b,r,ulz) e cos(% ) ( 0 urﬂt) Z COS(2¢V)’ ;1 = 0,40.,n "’
[} s v=l
whence
r 3
t(z,bjr,uj0) = - —u 8 (2 e(z,b3r,1]u,v) for {5’: l,f::;é;m) , (5.53a)
and
i(z,b;r,u‘l) =0 for{}; : : l,..;,m (5.53b)
yooey

Hence only the case & = 0 is non~trivial. That is, by (5.50) and (5.53) we
have [#,(z,b32)]_, = 0 for & = 1,...,n and u,r = 1,...,m. Further,
(22(z,b52)],., = O for all & = 0,...,n and u,r = 1,...,m. Hence (5.53) is
consistent with the cases in (5.47a,b,c,d) for a reflectance r(z,bjr,1|u,v)
that is independent of u and v and that depends only on r. Then the lower

boundary condition (5.52) for a matte bottom reduces to just

+ -

A,(z30) = A, (2;0) £,(z,b30) , (5.54)
with ét(z;l) =0 for £ =1,...,n, and é;(z;l) = 0 for ¢ = 0,...,n.

The case of the reflectance of an infinitely deep hydrosol is discussed

in §10.

We have now obtained a discrete, spectral form of the Natural Hydrosol
b Model in the form of equations (5.29), (5.44), (5.45) and (5.52). However, we
are not yet ready to proceed with the numerical solution of the local

' interaction equations (5.29). In order to integrate (5.29) down into the
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water column, i.e., over all depths y such that x < y £ z, we need the initial

%

v

values for the amplitudes namely ég(x;z). The upper surface boundary
conditions (5.44) and (5.45) relate the needed ég(x;l) to each other and to

- + . - .

known or measurable quantities such as Ag(a;l) and the r and t matrices of the "¢%¢
- - - )

W) 0':'0'.‘!'

air-water surface, but the boundary conditions by themselves cannot be solved WA,

";.3:
NS
R
et

*

P and

to obtain the needed initial conditions (there are four unknown vectors A
only two equations). A reformulation of the spectral model is clearly needed,

and this is done in the next section.

. . - TR
We do note in passing, however, that the present spectral model could be dﬁ?ﬁﬁhﬁ
O v
oy et
. . . . (RN A
solved approximately as a series of upward and downward integration sweeps of 'fdﬁ'ﬂ'
. . . .. . . ey,
the local interaction equations (5.29). This is a rather quixotic approach, rutth
.
. . . - . . Ao T
but 1t 1s worth a momentary consideration in order to make a general point. Yy Wi
At
. . . . . y .
To see how this might be done, consider the following. Radiance passes dﬁggzz%
-( !
My
through the upper boundary (e.g., from the sun) and into the water column dh%‘::
X N 1-<g
(using the transmittance part of (5.44)), where the light field varies with ‘wﬁSkaé
WAL
N
depth according to the local interaction equations. Some light is scattered 3g sti
l’|‘l 5
back toward the surface at each depth y, and some light eventually reaches the MUY
S ot
.

lower boundary where it is partially reflected (using (5.52)). This upwardly AN
scattered and reflected radiance is itself partly scattered again into N
downward directions at each y level, and some radiance reaches the water

surface, where it is partly transmitted into the air and partly reflected back
into the water column. And so it goes, ad infinitum. The radiance field ;};

which we desire is the total of the contributions of an infinite number of !

A

N
> Y

T W NS
> -‘\" o

-
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scatterings and interreflections like those just described.* The solution
field can be approximately obtained by a finite sequence of integrations of
(5.29) back and forth between the boundaries; termination of the integration
sequence is made when the contribution of another sweep to the accumulating
sum of sweep contributions is acceptably small. However, an exact summation
of the infinite number of interreflections can be made in closed form by the
powerful algebraic techniques of invariant imbedding theory when the media are
of the one-parameter type. The resulting equations are solved by just one
pair of integration sweeps and give the desired total radiance field. This
algebraic reformulation of the spectral model is the subject of the next

section.

e. The Case of the Vanishing Polar Caps

We pause to examine what happens to the basic equation systems (5.11) and ol
»
(5.12) when we let the radii of the polar caps go to zero. First, recall from }f;i'
ey
A +
(5.6b) that p~(y3m,u30) = p~(ysm,-|u,1). Next observe from (3.11) that ghy
™
generally p(y;r,s|u,v) + 0 as Q. 0. In the case that Qrs = Q,» a polar T AN
_ " D » vy
cap, it follows that p~(y;m,u3;0) + 0 as a polar cap's radius approaches 0. ;i«*
AT
Since A (y;m;2) goes to a finite limit (namely the radiance N(y;m,-) for E:;:,
ALY
ﬁb&
..‘
* What is being described here is a fundamental and powerful heuristic :?:yk;‘
approach to scattering problems known as the '"natural solution" u:u;w}&
procedure. See, for example, Preisendorfer (1965, p. 73) and H.O., :f:f
Vol. II, p. 203 for the case of photons; and Preisendorfer (1973, pp. 47- P
48) for the case of water waves, which explicitly realizes the above e
multiple scattering procedure. These references also contain some :r?ﬁg
historical notes on the natural solution procedure. This procedure is so Lelery
powerful that it can operate on all levels of radiative transfer theory, -i\
from obtaining simple estimates of radiance fields by single or double R :
scattering order calculations, to establishing the existence of solutions A
of the equation of transfer for radiance in arbitrary geometrical et
settings. Ultimately, as computer power continues to evolve, the natural
solution may be the way to go in general, irregular geometries and for
polarized fields in such geometries.
100
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% = 0, and vanishes otherwise (£ = 1,...,n) we conclude that the two cap terms
in (5.11) vanish along with the caps. The set (5.12) is unaffected as the
caps go to zero. These effects also can be seen in (5.15) and (5.16). The
result is that (5.15) and (5.16), for the case of zero-radius caps, are
autonomous equations (e.g., m-1 equations in m-1 unknowns) as are also (5.17)
and (5.18). Similar observations can be made for the boundary conditions.

The present theory can therefore be applied to natural hydrosols with capless
direction spaces.

It is interesting to see that (5.19) and (5.20) reduce under these
conditions to useless appendixes: one can integrate (5.19) and (5.20) down
into the hydrosol provided A{(y;m;O) = Ni(y;m,~) are known at some depth
y 2 x. However, such information is not accessible within the context of the
Natural Hydrosol Model: the continuous-direction information N'(a;g) is the
given input to the NHM. Upon undergoing quad averaging, this purely
directional information at level a is smeared out, The model solution then
determines the quad-averaged radiances Nt(x;u,v) at level x below the
surface. There is no unique road back, however, to Ni(x;g) at level x. Hence
we get the interesting "mule" equations (5.19) and (5.20). That is, these

equations, born of quad averaging pi(y;g';g) only over the £', cannot have any

progeny (solutions) in the NHM context.

+
W
"

This mule equation phenomenon can be witnessed quite generally by -

£ e e

\tv 'l " M
e
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allowing @ ., (but not ﬂrs) in (3.12) shrink to zero. The result is the hybrid
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-u 55 M3E) = N(y3g) + uly) § ] Myir,s) plyir,sig) (5.55)
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Suppose then we have used the NHM to compute the quad-averaged radiances
N(ysr,s) for all Q. in 3. Can we make use of (5.55) to compute N(y;g) at

some y for any g in Z? It would at first seem that this is possible. The

equation set could obviously be integrated at once over all y, x sy < 2z, B
WA
knowing N(y3g) for a single depth, say x, and for some fixed direction ;. fadegh
|'l"~':::
But how is one to come by knowledge of N(x3£,)? This, as we saw above, is N y
L ..‘
inaccessible knowledge at level x in the context of the NHM. by
. ey
In sum, then, equations (5.15)-(5.18) hold if the polar cap terms are H:.:::c:::
v 0""
et
removed from (5.15) and (5.16). The quads around the polar cap are replaced .:::i:::
! e
: , . e rh,a o
by triangles sharing a common vertex at the poles of the unit sphere of ® ‘
KON
directions (cf. Fig. 33 and let the polar cap shrink to a point). If we index :}:;::
\'-”-""#
WA
the quads, starting at the equator, from 1 to m~l1, where the polar triangles ::.\_:ct
\)‘-(‘E
are indexed by m-1, then (5.15)-(5.18) apply at once with the polar terms }“':‘
. + + S
removed from (5.15) and (5.16). The resultant four equations for AT and A3 A

)
5
£

then have identical forms. Of course (5.15) and (5.16) apply, as before, to ¢ ﬁ-.. ;

I
N |

in the range 0,...,.; while (5.17) and (5.18) still apply to % in the range tus
ly,...yn=1. Equations (5.19) and (5.20) become infertile, in the sense ;E'_':.':i
Aty
Vated N
described above, and are disregarded. ﬁij'
i
R % i,

What then is to be gained by deriving the local interaction equations 1
5 oy
(5.29) with polar caps included as part of the decomposition of the unit pﬁ&#“
W
¢
sphere 27 The answer is in the economy of description of radiance around the “"‘.
et
polar region: one small cap will do just as well in resolving zenith or nadir r‘ "
. . . ;:TJ' L
radiances as 2n triangles. However, it should be clear to the reader, who has .:',:f:.'_
AT NN
SR
el .
Y closely followed the derivation of (5.29) to its very end, that a much simpler .,-::,:',-_.
wioos
|'.-."-.

i and cleaner derivation results by eliminating the polar caps. So take your b ;
E pick as to which derivation you prefer; and remember: the present polar cap --::';-_\\
o
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derivation includes the non-polar cap alternate as a special case, but not

conversely.
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6. TRANSPORT FORM OF THE SPECTRAL EQUATIONS

a. Fundamental Solutions: Motivation

In this section we review some results from the elementary theory of
differential equations, and then go on to introduce the notion of the global
interaction principles, These will be the global versions of the local
interaction equations (5.29). We then can establish the imbed and union rules
for optical media, and also the Riccati differential equations for the global
reflectance and transmittance operators. These topics constitute the modern
transport approach to solving radiative transfer problems in lakes and seas.

To fix ideas, we consider a coupled system of two equations; the
generalization to a system of many equations (in particular, to the local
interaction equations (5.29)) will then be obvious.

Consider the pair of equations¥*

_ dn(y)
dy

n(y) 1(y) + z(y) o(y)
(6.1)

1"—%1 t(y) t(y) + a(y) oly)

where p(y) and 1(y) are continuous functions on x < y < z. This system can be

placed in matrix form by defining the two-element row vector

H(y) = [n(y), z(y)] (1 x 2)

and the system matrix

* For a reader familiar with the two-flow irradiance model (cf.,
Preisendorfer and Mobley, 1984), the following introductory exercise is
directly applicable to that model. Set n(y) = H(y,+), and z(y) = H(y,-),
and generalize p(y), t(y) to o(y,*), t(y,*).
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The system (6.1) can be integrated from x to any point y, using as
initial conditions n(x) = 1 and z(x) = 0. Let the solutions at y be n,(y) and E;
tol(y). Likewise, (6.1) can be integrated with the initial conditions n(x) = 0
and (x) = 1. Let these solutions be ng(y) and z,;(y). Each pair of solution
vectors [n;(y), zo(y)] and [ny(y), z,(x)]) is a fundamental solution of
(6.1). Note that at y = x the fundamental solution vectors are [1,0] and

(0,1], and are clearly linearly independent. It is easily shown (see, for

exampie, Coddington and Levinson, 1955, pp. 28, 69) that the fundamental
solutions associated with (6.1) for continuous p(y) and t(y) remain linearly
independent for all y values in x < y £ z. Therefore the general solution of
(6.1) over the range x £ y < z can be written as a linear combination of the
fundamental solution vectors. Now use the fundamental solution vectors to
define the fundamental matrix

n,(y) z,(y)

u(x,y) = : (2 x 2) (6.3)

n(y) z,(y)

The linear independence of the fundamental solutions guarantees the

nonsingularity of M(x,y). Note that

1 0
M(x,x) = =1. (6.4)
0 1
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Since the fundamental solutions each satisfy (6.1), it follows that

n(y)

n(x) n,(y) + z(x) n,(y)

g(y)

nl{x) ¢ (y) + z(x) ¢, (y)

gives the general solution of (6.1) for arbitrary initial conditions

[n(x), z(x)]. In matrix form this equation is

H(y) = H(x) M(x,y) , (6.5)

which is known as the mapping property of M(x,y), since M(x,y) maps the
initial vector H(x) into the solution vector H(y).

Two important properties of M(x,y) can be obtained from (6.3).
Differentiating (6.5), applying (6.2), and letting the initial conditions H(x)

be arbitrary leads to the conclusion

g; M(x,y) = H(x,y) K(y) . (6.6)
This equation merely states that the fundamental solutions satisfy (6.1). A
second property is found from the observation that the solution at z, H(z),

can be expressed two ways using the mapping property:

H(z) = H(x) M(x,z)

H(z) = H(y) #(y,z) ,
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where M(y,z) is constructed as a set of fundamental solutions whose initial
values are taken at y rather than at x (thus M(y,y) = I). Substituting (6.5)
into the second of these two equations and using the arbitrary initial

condition H(x) yields the group property for M:

M(x,z) = M(x,y) M{y,z) . (6.7)

It follows from (6.7) (upon setting x = z) that
ﬁ-l(xvy) = ﬂ(yyx) .

It is clear that the general solution of (6.1) or (6.2) is closely tied
to the linear algebra of the system matrix k(y) and the fundamental matrix

M(x,y).

b. Fundamental Solutions: Application

We next apply the concepts introduced in the previous section to the
local interaction equations, (5.29). Now the lxm vector of upward amplitudes,
é;(y;l), takes the place of n(y); and the lxm vector of downward amplitudes
é;(y;l) takes the place of ¢(y). Likewise the mxm matrices §(y;2) and i(y;2)

replace o(y) and t(y), respectively, in (6.1). Then (5.29) can be written as

d e (s = (at(v: (e “A(vs Alos
E; [ép()’vz), ép()’vl)] = [_A_p()'79')’ ép()'vg-)] E(y;l) g(y,l) .

~6(yse)  %(ys34e)

Defining

ép(y;l)

[é;(y;l), A;(y;l)] , (1 « 2m)
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-3(yse)  B(yse)
k(ys32)
-6(ys2) i(yse)

the local interaction equations can be written as

1y Ap(yiL) = A (y31) K(y3e)
where p =1 or 2 and & = 0,...,n. Observe that the system matrix is
independent of p = 1,2.

In analogy to the pair (6.2) and (6.6), we have the present pair (6.9)

d—y M(x,y32) = M(x,y32) K(y32) (6.10)

d

for £ = 0,...,n and for x < y € z. The fundamental matrix M depends on the
g-mode, but is the same for p = 1 or p = 2. M is now (2m) x (2m) in size, and
the initial conditions for (6.10) are

M(x,x32) = 1,

where 1 is the (2m)x(2m) identity matrix.

The group property (6.7) is now, for each ¢ = 0,...,n, and x

M(x,z32) = M(x,y;2) M(y,z32),

and we can write the mapping property (6.5) as




3
A (y30) = A (x30) M(x,y30), (6.13) LreLide

3
for p=1,2 and % = 0,...,n, with x € y < z. r.'
The results just presented apply to a downward integration of (6.9) along
\ -
the water column from x to y. We can also consider an upward integration from et ﬁ
z to y, for which a corresponding set of fundamental solutions exists. For an '.. .

upward sweep we have the corresponding development: >

M(z,y32) = M(z,y32) K(y;3e) (6.14) " ‘:“::"‘

gl
;‘

|
|~
.
-
5
- ¥
- %

M(z,z32) =

M(z,x32) = M(z,y;2) M(y,x58)
and s:‘ﬂ'-"

ép(y;?.) = ép(z;l) M(z,y31) ' .v DA

- Y - . < < ns"" ..’

where p = 1,23 ¢ = 0,...,n3 and x < y < z. ‘\\\\\‘,’"i‘,,
It should be noted that the integration sweeps of (6.10) or (6.14) G“‘l»“\)
proceed routinely as long as K(yj%) is continuous. If K(y;3%) is v
L "

discontinuous, as at the air-water boundary, we can cross the discontinuity :":.:":f
. . 7‘."‘.'),‘

not by integration but by an extended form of the group property (6.12). P D
Thus, for example, given the incident amplitude vector ép(a;l) just above the Eatatiyth

air-water surface, and given the fundamental matrix M(a,x;%) which we assume ._,_\_,:s.*\'

for the moment to be associated with the air-water surface in some way, we can .'.."'."":.\"
integrate (6.10) from x to y (since K(y;2) is continuous in the water column)

to find M(x,y32). We would then use the extended form of (6.12) to obtain N ".:'QE‘
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g? M(a,y3%), and thus the solution ép(y;l) via (6.13). However, we will not gpﬁ;‘
R el
- proceed this way, since the fundamental solution, while a beautiful analytic Sy
% - - e b I K
%b tool, is not readily amenable to the preceding kind of hybrid integration- ng%‘.
[) RV {
() B} v/ A
¢ N . . . . “"\'S
::n algebraic task. This is the case since the fundamental matrix M(a,x3;%) for :* :,
(N RS o
L . . . . . AN
' the air-water surface must first be derived by certain algebraic procedures a4,
B . .

N from the basic reflectance and transmittance matrices f and t of the air-water

sy

::‘ surface. Perhaps more importantly, the fundamental solution procedure is

numerically inherently unstable,* so that great care must be exercised in the

integration of (6.10) and (6.14) over ranges of y on the order of 10 or more

"
"". «
dy ) . 'a:"n
::‘ optical depths. For all these reasons, therefore, we turn to a more versatile l::..:;,i
I e
4 and physically more meaningful mode of solution of (6.10). fetlys
o
UG
"y peoN
fﬁ c. Global Interaction Equations :;
"y RN
w Let us expand the general solution (6.13) so that the upward and downward :?.\‘
,. ,
‘I' amplitudes are visible: \."’\_‘;
o 'l.':r
» b
! + - + - y
' (A (y32), A (y30)] = [A (x32), A (x30)] M(x,y30) (6.15) W
»‘"‘ -
R L
W R
::: For the slab X[x,y) of the plane-parallel medium (cf. Fig. 1) we think oy
- - C + 2
- of _;}_p(x;z) as being incident on ¥X[x,y} from above at level x, and ép(y;l) as .
[} -
::E being incident on X[x,y] from below at level y. These incident amplitudes are ‘7-?‘3]
J 00
o e , : e
o thought of as initiating the light field in X[x,y]. Hence, we may think :*\ 3
) s, :
! DN
N of é;(x;l) as being the associated response of the slab X{x,y] at x, l‘i'-.-.'
::, and é;(y;l) as being the response of the slab X[x,y] at y. The term E:
" -
2:: "incident" is motivated by the idea of light shining downward into the slab at :_",',‘tj',
e
y hgbt
B - (S &,
s * An examination of the numerical instability of the fundamental solution
:: procedure was made in the water-wave context of invariant imbedding theory;
::: see Preisendorfer (1977, p. 40).
n’:
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I ()
P.ﬁ ‘.‘ t
= Q‘:al::
. . . S0
x and upward into the ‘slab at y. '"Response" calls to mind the light leaving & :':ﬁﬁ
V!
the slab at x and y after the slab has responded at all internal levels to the ¢
. :h lxi
light incident on its boundaries. We now see that (6.15) gives the incident iqﬁ*:‘.
J" .’l
and response amplitudes at level y as a function of the incident and response e .ﬁéﬁﬂ
0 l'. W
MO
amplitudes at level x, and thus is not in a useful form even if M(x,y3%) is .
by
known. What is needed is an equation relating the response amplitudes at x ;f"§h€£
r‘ N "
and y to the incident amplitudes at x and y. Such an equation can be obtained Q3?ﬁ;ﬁi
Betatiey
by rewriting (6.15), as follows. ®
, DN
Recall first that here I and M are each (2m)x(2m). Then write (6.15) :*hq&*é
t:::t:".::“::
as h.ﬁ:.‘c::fa
Rinhore
.
+ - + - l ‘:“J'.-A 0
(A (yi2), A (y;e), A (x32), A (x;0)] =0 . (6.16a) S
P P -M(x,y3e) '

We wish to reorder the extended horizontal vector into the form

{31 <l
A g

o
27

+ - + -
[ép(x,l), ép(y,l), ép(y,l), ép(xvl)] ’

%

in which the first two vectors are the response vectors and the second two are

e 4
2
2
ud”s

o
LS

the incident vectors. This can be accomplished by the following matrix

--.‘
fol o
e
S

mapping of the two kinds of vectors, above:

.Y

. 3 ‘I"
5
—;5J

[A;(y;n), A (y31), ég(x,l), A (x,0)] . [é;(x;l), A (y30), é;<y;z), A (x30)]

O OO
OO HO
QOO0
- O OO

The 0 and I elements of the matrix operator are each mxm matrices. We can

partition this matrix operator as

0 VI
| P, P
o |9_LpL00f _ =2 =t
L ool = [; TE|
) -1l =2
10 I
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where P, and P, are each (2m)x(2m). Now observe that

|ro
"

-1

so that P2 can be inserted into (6.16a):

-1

- - P, B2 I
[é;(y;l), A (y30), A;(x;l), a0y B;] [;g(x’y;z) =0.

Performing the indicated multiplications of P acting to the left and to the

right yields

P, - BM(x,y5%)

+ - + - LS _
[ép(x;l), ép(y;l), ép(y;l), ép(x;l)] P, - P M(x,y30)| ~ 0.

L
Expanding this equation gives
+ - + -
[AP(X;Q)’ ép(y;l)][gz_gl ﬂ(xy)';l)] + [ép(Y;l)y AP(X;Q‘)][Bl-BZ ﬁ(x,y;l)] =0

or

[Q;(xsz), ég(y;l)] = [Ag(y;z), gg(x;z)][g2 M(x,y38) = P 1[P,-P, M(x,y32)]"! ,

(6.16Db)
which gives the desired reordering of the amplitude vectors.
We define
M(x,y;8) = [P, M(x,y;2) - P, )[P,-P, M(x,y;2)]! (2m)=(2m) (6.17)
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and note that M(x,x32) = I, The continuity of K(y3%) guarantees the existence Eetgkﬁ*f
L ks K N >
- Lol ;
of the inverse in the definition of M(x,y;2). We can partition M(x,y;2) as f’ M,
L4 ' .
\ ) "
T(y,x32) | R(y,x;%) '.¢$$’q
. - |- [y H..‘O
et | ’ i
R S
where the R and T matrices are defined in context and are each mxm. They are ;E gf; ‘.
NEASN
termed, respectively, the standard reflectance and standard transmittance Ty : q??
. . . . . . \
matrices. These matrices may be defined explicitly by performing the giujsg
¥
indicated operations in (6.17). First, we define four mxm submatrices of i;$$$$a$
(R O]
P, 0 0t
M(x,y3%) in context by writin X ﬂ“ﬂﬁ(
8 4
= 'ﬂ@éﬁ\ .
i:!"'.‘:" i
L’++(x’y;g) 5..._("9)'”') i _'
M(x,ys8) = (6.18) e ]

KOO
M_, (x,y32) M__(x,y,2) ity

SO
“Q‘k|§¢$
R
Then we find from (6.17) that (cf. H.O., Vol. IV, p. 43) AN
]

Calld
k]
WAl
) L
N

"

X

¥,
A

AR
AR
N A
~

R(y,x38) = M7l(x,y32) M, _(x,y;2) (6.17a)

T(x,y32) = #__(x,y38) - #_ (x,y;2) M7l(x,y30) ¥ __(x,y;2) (6.17b)

4
20 o

T(y,x32) = M71(x,y;52) (6.17¢c) g

y
¥

B
;;53; ;

R(x,ys2) = -M_ (x,y38) M71(x,y;2) (6.17d)

. o gw o g
o
Py

7 o
I"

o
7

PN W

From (6.11) it is clear that, for & = 0,...,n,

-

A

f{???
H] v"

7.-2{3?
<

'S

N I
4l
R
-

5 54
e
“~ "
v A

M, (x,x30) =8 __(x,x,38) =1 (mxm) (6.17e)

e
f?h}
o ]

M, _(x,x32) = M_ (x,x52) = 0 (mxm) (6.17£)
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R(x,x32) =

which express the intuitively clear idea that a water slab of zero thickness

has unit transmittance and zero reflectance. Observe that the R and T f‘_ !

matrices are independent of p = 1 or 2. Therefore, (6.16b) can be written hy

) T(y,x32)  R(y,x;%) ;
(A7 (x30), A-(y32)] = [A(y50), A (x32)] - R
P P P R(x,y;2)  T(x,y;%) e

Expanding this equation gives the global interaction equations for the slab g‘:‘ |

X[x,y] and azimuthal spectral indexes & = 0,...,n: S},,_N' o

I‘J
ol
[N

o
o
Pt

A;(x;l) é;(y;l) T(y,x32) + A (x58) R(x,y32) (6.19)

YA
T
YR

A (yi2) é;(y;l) Ry,x30) + A-(x30) T(x,y30) (6.20)

for the cases p = 1 or 2. :EE .,::..‘o

An analogous development can be made for slab X[y,x]
with ép(y;l) = ép(z;l) M(z,y;2) as the starting point. Moreover, e
representations analogous to (6.17a-d) can be made. We then obtain the global &1: 0

interaction equations for the slab X[y,z]: - e

A;(y;l) ﬂg(z;z) T(z,y58) + é;(y;l) R(y,z32) (6.21) N "

A (z32) A;(z;l) R(z,y32) + A_(y32) I(y,z;2) (6.22) ;

v,
rr
where T(z,z3%) = I and R(z,z3%) = 0. ’cj-" !
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The R and T matrices for X[x,y] or X(y,z] therefore can be evaluated at ,z, Jh*w
o ~ '.I
once using (6.17) or its analogs for X[y,x], knowing the fundamental operators F“ﬁ' .
A AN
M(x,y;%) or M(y,z;%), respectively. However, except for (6.17c), we will use 355",\. '_
)
ol (
a numerically more expedient procedure, to be outlined in paragraph £, x;b'
'ﬁ"u‘\"ﬂt
below. The exception, wherein we use (6.17c), will occur in §10. e 4
* o -\ N 'Y
For future reference, these analogs for the slab X[y,z], are }ﬂuxy?,;
gdois
nTnI,
"r-'ﬂ'-)"}“'lﬁq'
st
R(y,z32) = MZ1(z,y52) M_, (z,y52) (6.21a) ®
AT
- . . e
I(z,y38) = 4, (2,y50) - ¥4, _(2,y;2) #Z1(z,y30) ¥_ (2,y;2) (6.21b) gff:ﬁ"'ﬁ
T(y,z32) = M~ (z,y32) (6.21c) :§;§}€$
- - o
NN
R(z,y3e) = -M,_(z,y52) MZ!(z,y;58) (6.21d) @
A a ]
N WL
I.‘ﬂ [
.'_:.-:-4-:.5:;
A
The standard transmittance and reflectance operators, in (6.19) and Kﬁﬁg&;.
YA
(6.20) describe the transmittance and reflectance of the entire slab X{x,y], “Jl
ST e Yy
r \.:."-',“'
and thus carry two depth arguments to show the slab in question. The order of k{h}:ﬁ:
RRINEN
the depth arguments, e.g. T(y,x;2) vs. T(x,y;2), is related to the direction :gﬁ:}::ﬁ
RRINOIN
in which the photons are traveling. Thus in (6.19) we see that the upward - [ X
ST
AR THY
(response) amplitude Q;(x;l) at the top of slab X(x,y] is equal to the upward ¥§;x¢:¢
N h
RS
(incident) amplitude A;(y;l) at the bottom of the slab, as transmitted through ERQK\;:
AT
the slab from y to x, plus the downward (incident) amplitude A;(x;i) at the e

top of the slab, as reflected by the entire slab between x and y. Analogous
interpretations hold for (6.21) and (6.22). This notation is designed to be
intuitively clear and allows us to write down by inspection the global
interaction equations for arbitrary slabs.

We also note that equations such as (6.19)-(6.22), which hold for each
azimuthal spectral % value independently, are easily written in a form which
incorporates all f%-modes together. To do this, we concatenate the lxm

vectors é;(x;i), 2=0,1,.. ,n, into a lxm(n+l) vector é;(x) via
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+ + + +
A (x) = [ép(x,O), §p(x,l),"-,ép(x,n)] , (6.23)

SR

with corresponding definitions for the other amplitude vectors. Likewise we v

W ":‘.t'l'
define an m(n+l) x m(n+l) block-diagonal matrix e

IT_f_(Y’X;O) 9

9
0 T(y,x;1) ]

o Jo
2
Pl

T(y,x) = . . , (6.24) o

- P ".'"s
R
Y

be written N
) { i;‘

\
5

T=EE

with corresponding definitions for the other R and T arrays. Then (6.19) can

)
N ®
51

X
2

2
e

2
X
-

x5
="

i

A'(x) é;(y) T(y,x) + A (x) B(x,y) 1 x m(a+l) . (6.25)

5

1

Xx <y<z2

P4
¥ S
{'z
X

s
LTI

?"Y Y. r
A R
A

7

Sy
o
s
:x .
e

If the water itself were an anisotropic scattering medium, then the full form

{6.25) would be required for the interior slab X[x,yl]l, since the %-modes would

pofr ]

not decouple and thus T(y,x) and the other related matrices would not be

)

.
s

" M. .
block-diagonal. We shall retain where possible the explicit f%-mode notation, v{:.:-\p

RN
as in (6.19), in order to emphasize the simplifications obtained “rom the q\_._‘.,:q_
AT A
. . . . . REOCRLN,
scattering isotropy of the water body. When developing global interaction x‘:".'::\:::-
_‘-«\.\0.\\‘

. . . \. .'-L--‘.v
equations for the surface boundary slab X[a,x], we will find that the full s::x; T
NN
matrix form, as in (6.25), is required due to the scattering anisotropy of the e ..‘.
RO
upper boundary. Our notation thus highlights the effects of the model RN
A
. . . . . . B 9.' \'% 3
assumptions about an isotropic medium with an anisotropic boundary. .,-4."\‘,\:
Lo LY
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d. Invariant Imbedding Equations - Imbed Rules
Useful rules for finding the radiance amplitudes within a slab, knowing

the incident amplitudes, can be derived from the global interaction
equations. onsider a general slab X[x,z] composed of slabs X[x,y] and

"v.:]. These subslabs may be surfaces or bodies of water. The results below
wi'. sh-w how to find the radiance distribution at level y knowing the
distributions at x 1d z. The global interaction equations for X[x,yl are
given by (6.19) and (6.20), and the corresponding equations for X(y,z) are
given by (6.21) and (6.22). We ncw solve these equations for é;(y;l) and
é;(y;l), the amplitudes at the level y between the two slabs X[x,y] and

X(y,z}, using, say, (6.20) to replace é;(y;l) ia (6.21)s
5;(y;9.) = 5;&:;9.) T(z,y10) + [gg(y;z) R(y,x38) + A (x,2) T(x,y32)) R(y,232)

This equation yields

+

A (y3e) = 5;(2;2) T(z,y32) (L - R(y,x;2) R(y,z;2)]"}

+ é;(x;l) T(x,y32) R(y,z32)[I - R(y,x;%) R(y,z;2)]"!
or
+ + -

ép(y;z) = ;Ap(z;l) T(z,y,x32) + ép(x;l) R(x,y,z3%) , (6.28)

a<x<y<z<b
for ¥ = 0,...,n and p = 1 or 2, where the complete transmittance and complete

reflectance functions are defined by

2,
{4
R

-

ié.'.

Pyl

b
LN
£

»

~
>
N

“yr

Y
,l.:ﬁif
>

1 3

R
Fx
-

=
o X

Lo
SN

A
Jaggf;

o

A
Ny

<
-

z
!.,,.:

Fis .
A
P {;,‘l l$€&
g, 2,0 3
fu-.’#ﬂf

3
i‘l

*

S

D I T AR '
PR A AR
a-fﬁ;.{)j

‘n_&..'v;.“:.

L :2:
R

>

i
o

e

A
Vs
o

-

'\-‘l\:

5
LIRS
h »
A

R
PN

h )

D
PO
RS




T(z,y,x3%) = T(z,y;2)(I - R(y,x;2) R(y,z32)]"! (6.29)

and

R(x,y,z3%) = T(x,y;2) R(y,z;2)[I - R(y,x32) R(y,z32)]"! (6.30)

T(x,y;2)[I - R(y,z;2) R(y,x32)]=! R(y,z52) .

The last equation results from use of the matrix identity W(I - V W)~! =
(I - W V)l W, Substituting _@;(y;z) from (6.21) into (6.20) and solving for

é;(y;z) yields, for £ = 0,...,n, and p = 1, or 2:

A (y3t) = é;u;z) R(z,y,x32) + A_(xi0) Z(x,y,252) (6.31)

a<sx<y<z<5<b

for 2 = 0,...,n and p =1 or 2, where

R(z,y,x3%) = T(z,y3;%) R(y,x32)[I - R(y,z52) R(y,x;2)]"! (6.32)

]

T(z,y;2) (I - R(y,x32) R(y,z52)]"! R(y,x;2)

and

T(x,y,2;2) = T(x,y;2)(I - R(y,z32) R(y,x;2)]-1 . (6.33)
Equations (6.28) and (6.31) are the invariant imbedding equations, or imbed

rules, which relate the response amplitudes at any level y within a slab to

the incident amplitudes at the boundaries x and z of the slab (cf.
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Preisendorfer, 1958, 1961. For a recent application, see Preisendorfer and
Mobley, 1984). Note that the complete R and T functions require three depth
arguments in order to specify the slab boundaries x and z, and the
intermediate level, y. The orders of these arguments, (x,y,z) or (z,y,x),
once again serve to keep in mind the various directions of photon travel
ultimately making up a reflection or transmission,

The f£-mode invariant imbedding equations can be written so as to
incorporate all g-modes together, just as was done for (6.19) via (6.23) and

(6.24) to get (6.25). Then (6.28) and (6.31) read, for p = 1 or 2:

A'(y) = A%(2) T(z,y,x) + A (x) R(x,y,2) (6.34)
-P P - P -

and
A (y) = é;(z) R(z,y,x) + A (x) I(x,y,2) , (6.35)
as<sx<y<z<b

where the amplitude vectors are now 1 x m(n+l) and the complete reflectance
and transmittances matrices are m(n+l) x m(n+l) block diagonal matrices.
The invariant imhedding equations will find their application in §7

below, where we a ole the final solution from its constituent parts.

e. Partition Relations - Union Rules

The partition relations we derive here serve to give the standard
reflectance and transmittance matrix operators for the union of two contiguous
slabs in the natural hydrosol, knowing these operators for each part of the
union (cf. Fig. 1).

Thus suppose we have the four matrix operators each for X[x,y] and for

X[y,z], a £ x <y <z < b, We wish to find the four operators for

k‘)_l,.,'.~5“3”¥
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§6

X[x,z] = X[x,y] U X[y,z]. We seek R(x,z3;%), T(z,x32), and R(z,x;2), T(x,z3%)

such that
A;(x;l) = A;(z;l) (z,x32) + A (x58) R(x,238) (6.36)
and
- <+ - ""
Ap(z;l) = ép(z;n) R(z,x318) + ép(x;l) T(x,z32) (6.37) “ﬁﬁ

VR TR
'(?*S;n
- &

ooy
? s

Now, starting with global interaction equation (6.19) we replace é;(y;z) there

L
. . . ey
by means of the representation of é;(y;l) given by the imbed rule (6.28): > jﬁ

A;(le) = [é;(z;l) T(z,y,x3%) + é;(x;l) R(x,y,232) ] T(y,x32) AN

+

Ve
A (x32) R(x,y;2) & J
P } (ol "‘.1
'l.."@'..'_
Uganigrtt,
A
which, on collecting coefficients of the incident amplitudes on X(x,z}, IR

@
O
o
" l':':':‘
HRse
W

+ 5;(x;1)[5(x,y;z) + R(x,y,z3;2) T(y,x;2)] (6.38) A

becomes

A (x30) = A(230)(2(z,y,%32) I(y,x32)]

Since both (6.36) and (6.38) are general descriptions of the response

’

. N
»
.

¥

7

amplitude é;(x;l) of the slab X[x,z] subject to arbitrary incident amplitudes

LY
)
¥

-,r.
« ¢
»
Y

é;(x;l), é;(z;l), we conclude that for ¢ = 0,...,n, e

T(z,x38) = T(z,y,x;2) T(y,x;%) (6.39)

R(x,z32) = R(x,y32) + R(x,y,z38) T(y,x;%) (6.40)

a<x<y<z=%<b




[

i 4

A

&

R T T O T T o o R YY)

Y

§6

In like manner, now starting with global interaction equation (6.22) and
replacing é;(y;l) there by means of imbed rule (6.31) and comparing the result

with (6.37), we find for £ = 0,...,n:

T(x,z32) = T(x,y,z;%) T(y,z;2) (6.41)

E(z,x;l)

R(z,y3;%) + R(z,y,x;2) T(y,z;e) (6.42)

a<x<y<z<b

Equations (6.39)-(6.42) are the union rules for finding the R,T quartet

associated with X[x,z} knowing each of the quartets for X[x,y] and X[y,z].

f. Riccati Equations for the Standard Operators

The global interaction equations and the invariant imbedding equations
all involve the various standard reflectance and transmittance operators. We
now derive a set of differential equations governing the R and T operators
within the water column X(x,z], and show how these equations can be integrated
to obtain the needed R and T operators.

Consider the slab X[x,y], and the associated global interaction equation

(6.20):

- + -

ép(y;l) = ép(y;l) R(y,x32) + ép(x;l) T(x,ys2) .
Differentiating this equation with respect to y gives

- +
dép(y;l) cgp(y;m) . dR(y,x32) _ dT(x,y;2)
= R(y,x32) + A (y;32) + A (x30) —————

dy day =0 Zp 77 dy p dy
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The local interaction equation (5.29) can be used to replace the derivatives

of the amplitudes:

YK

5;(::;1) yse) + é;(y;l) Blyse) = [-é;(yzl) i(yse) -A;(y;l) 8(y30)] R(y,x;32) +

. dR(y,x32) _ dT(x,ys;2)
A (y38) —————— + A (x38) —————— .
-p dy -p dy

The two occurrences of é;(y;l) in the last equation can be replaced via the

global interaction equation (6,20). On rearranging the result, we find

dR(y,x38)

+
0=A 13

- B(ys2) - (y3e) R(y,x32) - R(y,x;32) 3(y;8) -

T T R e

R(y,x32) 5(ys2) R(y,x38)| +

_ dT(x,ys2)
A (x30) —ay " IGoyse) ilyse) - Tlx,yse) Blyse) Riy,x32)) .

This equation must hold for arbitrary incident amplitudes é;(x;l) and é;(y;l)
on the slab X(x,y]. Therefore the coefficients of the incident amplitudes
must be individually zero, from which we obtain (6.43) and (6.44), below.
Repeating this procedure beginning with (6.19) yields (6.45) and (6.46),

below, for ¢ = 0,...,n; and x < y < z:

o mem R R AR W N RN T T e - .. Y
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o

iy R(y,x32) = [B(ys;2) + 2(y;2) R(y,x32)] + g(y,x;z)[j(y;z) + 5(ys3e) g(y,x;mzj o'c‘::'%:
(3

(6.43)

-d—y- T(x,y3%) = Z(x,y;l)E(y;l) + 5(yse) g(y,x;zﬂ . (6.44) Ve
e,
J«:ﬁﬁ:
[2(y52) + R(y,x38) p(ys2)] T(y,x;8) (6.45) QR

— T(y,x;32)

a.la.
<

Pl Ry
ﬂl_n“.:,‘:

l‘,‘ A
d T(x,y;2) 8(y3e) T(y,x32) (6.46) ;;5;‘:,%

dy

R(x,y;3e) S
N
Pt 8. 00
@

We recall from the defining equation for the standard operators that e
oy |0".t‘|i
“ﬂ 'y‘t';‘f

" l‘ .|"

u::s'::'&“::;

R(x,x32) = 0 and T(x,x32) =1 , for & = 0,...,n. (6.47) %,

. .
The Riccati equations (6.43)-(6.46) are called the downward Riccati "ﬁ ¢,

guartet, since they can be simultaneously integrated with a downward sweep %"’ A%

from x to any depth y, x < y £ z, beginning with the initial conditions DA,

(6.47). Note that the j(y,%) and i(y;%) matrices (defined in (5.21) and P}E ¥a)
RN, %

. . . . RS LERY

(5.24)) are in general different for different azimuthal spectral % values, so ’:\,’5‘.\'
L N

Y

that R(y,x;%), T(x,y3;2), etc., also depend on %, even though the initial
conditions are independent of %, :E%“' )

L

Now consider the slab X{y,z]. We can differentiate the global :}':\\f".,(

interaction equations (6.21) and (6.22) with respect to y and, following the Ry

b g

’
x
Y
X
2
ll/‘t

.
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PO e

procedure leading to (6.43)-(6.46), eventually arrive at the upward Riccati
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- %; R(y,z38) = [5(y32) + (y3e) R(y,z32)] + g(y,z;l)[g(y;l) + plyse) g(y,z;zz]
(6.48)
- %; T(z,y;2) = E(Z,y;l)E(y;l) + 6(ys3e) _P:(y,z;lﬂ (6.49)
- %; T(y,z32) = [(y3;2) + R(y,z3¢) 6(y;2)] T(y,z;32) (6.50)
- %; R(z,y;2) = T(z,y38) 3(y;e) T(y,z;32) : (6.51)
with the initial conditions
R(z,z32) = 0 and T(z,z3%) =1, for & = 0,...,n. (6.52)

Equations (6.48)-(6.51) can be integrated in an upward sweep from z to x, with
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initial conditions given by (6.52). u!
The Riccati equation quartets (6.43)-(6.46) and (6.48)-(6.51) are the ‘t:?‘\'_.
heart of the Natural Hydrosol Model's solution procedure. In particular the H-:m:
)
two pairs (6.43), (6.44) and (6.48), (6.49) are the main workhorses in this ,.‘-
study. These two pairs of equations are integrated by n+l independent Es‘.‘ﬁ
downward and upward sweeps: one sweep in each direction for each & value, Eé::}f};:
2 =0,l,...,n. The equations are numerically well behaved in the sense that ::::::\r
there is no possibility of a solution growing exponentially with depth :_:&fgi
(physical reflectances and transmittances are bounded by 0 and 1, so their 'k-.:"t‘:
spectral equivalents are also bounded). By using a sufficiently small step i‘i’?{?
increment Ay and a high-order integration scheme (e.g., a sixth order Runge- :.n.i;:
Kutta algorithm), the standard reflectances and transmittances can be obtained _E: "‘l
with any desired degree of accuracy. The R and T arrays need be saved only \“‘:: ::_
for a prechosen set of y values, x =y, € y, € -++ ¢ Yq ¥ 2» where final ibf )
output of the radiance field is desired. N :
124 oy
) }"-3‘.\5& ‘\.}\- -.Q\ \\t 2 A J‘., - ‘E:.‘Sl. ‘6 \(ﬂ. )\'&x}-\: :‘:‘; '_"3.% M \, '_\. .;.\" :;t :‘f‘ oy \.'\-. “ '\-\'Q:.
3 .-0.~'.-¢'"!\. e '., R Al ”‘ W f‘“ﬁ t&&"‘ﬁ.m



The power of the Riccati equations in the present hydrosol model is

revealed by noting that they allow us to solve the radiative transfer problem
within the water body itself, without any consideration whatsoever of the
surface and bottom boundary conditions to be imposed on the water body.* 1In
particular we are able to avoid coupling with the anisotropic surface until
the last minute. We thus first solve the radiative transfer equation for a
"bare slab" X{x,z]. It then remains to couple this interior solution for slab
X[x,z] with the boundary conditions for slabs X(a,x] and X[z,b] in order to

obtain a complete solution for the entire water body.

8. Global Interaction Equations for the Surface Boundary
Recall eq. (5.44) which gives one of the surface boundary conditions on

the amplitudes:

n n
gx_p(x;c.) = Zo é;(x;k) ip(x,a;klﬂ.) + kZO ép(a;k) gp(a,x;klv.) (6.53)
(k+% even) (k+% even)

where p =1 or 2 and £ = 0,1,...,n. The amplitude vectors in (6.53) are lxm
(recall (5.22) and (5.25)) and the t and £ matrices are mxm (recall (5.41) and

(5.43)). Now define 1 x m(n+l) amplitude vectors as in (6.23), i.e.

ép(x) [ép(x;O), ép(x;l), Tee é_p(x;n)l ’

with corresponding definitions for é;(a) and é;(x). Also define an

I YU VNN WY INH

1 ) M i
’;N'tw‘ '
AR
L J

-

) W
AN
e

)
':':!:::!l'a..(

o
‘:::..:'0:'0"::'
R

§
Sy

.1

m(n+l) x m(n+l) transmittance matrix using blocks of the form ép(a,x;kll): DAL,
A S
RN
R
[ "
RO
* For an application of the Riccatian quartets to linear hydrodynamics, see SRR AT
Preisendorfer, 1975, pp. 62-63. Once again the power of the transport LA
solution procedure applied to systems of linear differential equations is A
evident. ':*:*ﬁ*f
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£(a,x) = (6.54)
ép(a,x;OlO) 9 ép(a,x;0|2) Q0 _E_p(a,x;0|n)
0 t (a,x31|1) 0 t_(a,x31|3) 0
2 =p 2 p 2
Ep(a,x;zlo) 0 gp(a,x;zlz) 0 Ep(a,x;z,n) .
: : : : : : ]
' ) e
Lip(a’x;nlo) 0 tp(a,x;ln,z) 0 Ep(a,x;nln) | F,._.‘\:}-;
T )
- [
The matrix t _(a,x) is a block matrix with a checkerboard pattern of mxm zero KRRROTY
- 4 Qig" ()
? N
Wyt
and non-zero blocks, the details of which were seen in Tables 1 and 2. With a ‘4.:::::::3::0

similar definition for gp(x,a), (6.53) becomes, for boundary X[a,x]
A (x) = A'(x) £ (x,a) + A (a) £ (a,x) . (6.55)
-P -P ~P Bt % -P

Likewise, boundary condition (5.45) for boundary X[a,x] can be written

a'a) = A'(x) £ (x,a) + A (a) £ (a,x) . (6.56)
-p =P -p -P ~P

Comparison of (6.56) with (6.25) shows that the matrix version of this upper Ey L

e : . i . . N

boundary condition is formally just like the global interaction equation for a bV ialesty
@

water slab X(x,y]. But unlike (6.25), which decomposes into the individual Ay
at '_\_;\

mode equations (6.19) and thus holds for each & value separately, (6.56) \;{:ﬁﬁ'

Bt
ol

incorporates all %-modes into the same equation and cannot be further f."':‘"}&
. . , : @

decomposed since t _(x,a) and t_(a,x) are not block-diagonal. Corresponding ]

=p -p SR :‘"t

comments apply to (6.55). The computer code handling of (6.55) and (6.56) is ::_‘“ ‘

RS

. Y .\-ﬂ- 1
discussed in §l2b, below. . '
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p and _ "

ip are acting like standard T and R operators but now for the infinitesimally Thilet

We see that the upper surface transmittance and reflectance arrays g

thin slab X[a,x] which constitutes the upper boundary. The operators é and ol

p :',”'

ip for the surface boundary are now order m(n+l) square matrices, due to the ut

coupling of the %-modes; and, moreover, they depend on p. A0

h. Global Interaction Equation for the Bottom Boundary 000
3
The bottom boundary condition (5.52), i.e., TR

é;(z;ﬁ) = A (232) £ (2,b[8) , £ = 0,.00sn (6.57)

is much simpler than the corresponding upper boundary equations (5.44) and Qq?%ﬁk
5y,

(5.45) for the air-water surface. From (6.57) with the help of (5.54) (for -‘

N

the case of a matte bottom) or the results of §l0 (for the case b = »), we LoV

immediately identify the required standard reflectance operator for the lower ﬂ;gél

boundary slab X(z,b]: G
Q&ﬁ:f
gp(z,b;z) = gp(z,b;z) y £ = 0,.00,n0. (6.58) Z_'-.,t;:_

Since X[z,b] is defined to be opaque in all cases we consider here, it follows
that the remaining three R and T operators need not be defined for the present 3&%&#_
hydrosol model. 3\’3#

In the solution procedure of the present model (in §7b.4) it will be
required to find the reflectance gp(y,b;l) of the composite slab t:L\fj
X(y,b] = X{y,z] U X[z,b] as seen from the water side for all y, x < y < z. We AN
can find an explicit formula for gp(y,b;z), for x < y € z, using the union AN
rule (6.40) along with (6.30) applied to this case by replacing the arguments “ §$§W

(x,y,z) with (y,z,b), respectively. The desired result is &

RS LSRN .
o '_"'..\ ?.\\_n\.;‘ ih\:n T ) ,,-“..n‘;\,-h\,:". [N

2
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. = . . -2 . . -1 = . .
_R,p(yrb’l) B_(Y,z,l) + E(Y’zvz)[l Ep(z,bvl) E(Z,y,’-)] _{p(z,b,ﬂ.) Z(Z,y,l)
(6.59)

for any y in the range x S y S z. We will now show how to simplify the task

of finding gp(y,b;l). Two facts about this formula are of interest here:

(1) Ep(y,b;z) - ﬁp(z,b;z) as y + z
(ii) Ep(y,b;l), as a function of y, obeys (6.48) for each fixed p, b,

and %.

Property (i) follows by inspection of (6.59), using the continuity of the R
and T matrices with respect to y, and initial conditions (6.52) for the upward
Riccati quartet (6.48)-(6.51). Property (ii) is either immediately obvious on
physical grounds (think of the photons sensing the change of gp(y,b;!) through
the incremental growth of X[y,b) at level y) or it is not. In the latter
case, one verifies the assertion by differentiating (6.59) with respect to vy,
and then reducing the derivatives of the R and T matrices using all four
members of the upward Riccati quartet (6.48)-(6.51).

As a consequence of these observations, we may generate gp(y,b;l) by

simply sweeping (6.48) upward with the initial condition (6.58).
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§7

7. SOLUTION PROCEDURES FOR THE NATURAL HYDROSOL MODEL
We are finally in a position to numerically solve the present Natural
Hydrosol Model for the radiance distribution throughout the water column,
given (1) an input radiance distribution from the sky, (2) the various
reflectance and transmittance operators which describe the upper and lower
boundaries, and (3) the scattering and absorption functions which describe the

water itself.

a. Initial Calculations

When faced with a physical setting in a lake or sea, for which we would
like to compute the radiance distribution, we must first choose the quad
resolution. As discussed in §3a, we must pick m and n, so that the unit
sphere = is partitioned into 2m latitude bands and 2n longitude bands, as in
Figs. 3 and 4. Of course, the larger m and n are, the better is the angular
resolution of the solution radiance Nt(y;u,v), but the more expensive are the
computations. Storage and computation requirements generally depend on .12n2,
so doubling the angular or quad resolution in both the u and ¢ directions
results in a factor of 16 increase in computer requirements. Once m and n are
chosen, we must pick a particular algorithm for determining the quad size Bu,,
u=1,2,...,m, as discussed in §3a. Thus the first task of the program is

(1) Given: Values of m and n and the desired type of quad

partitioning.
Compute: The layout of the quads Q,, on the unit sphere =.

After the directional resolution of the Natural Hydrosol Model has been

fixed in the manner just described, the next order of business is the

determination of the upper surface transmittance and reflectance arrays:

(2) Given: The wind speed over the water surface.
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Compute: The four quad~averaged transmittance and reflectance

functions t(a,x;r,s|u,v), etc., using the ray-tracing technique

il

of §9, below, and equations (9.1) and (9.7) therein.

Compute: The spectral forms ép(a,x;kll), etc., using (5.31b),

(5.32), (5.34) and (5.36).

The computations of initial step (2) form a major part of the work in the :;:{?
Natural Hydrosol Model. The determination of the reflectance at the bottom :E:E;’
boundary is much easier: g ; :i

(3) Given: The desired type of bottom boundary--either matte or t .'r'

infinitely deep and homogeneous. g;;' é

Compute: The spectral reflectance matrix for the bottom boundary, Ei;ﬁgg
gp(z,b;l). "_?:_1?:‘

(a) If the bottom is a matte surface, use (5.50), (5.51) and (5.53). ?.ix\i
(b) If the bottom boundary X{z,b] represents an infinitely deep, é?t%dj
homogeneous water column, use (10.8) and (10.9). ?%nﬁgl

We next prepare the input radiances: ;Sﬁ%;

(4) Given: A sky radiance distribution incident on the water surface, §§%§25

N(a3g) = N(aju,8), <1 € u <0, 0 <6< 2n FT

| ) | B
Compute: The quad-averaged radiances N (aju,v), using (3.3). i?f:ﬁ*g
Compute: The incident radiance amplitudes é;(a;l), using (4.8), gf;i:gi
(4.9) and (5.22), (5.25), (5.27). o

The final initialization task is the processing of the volume scattering Eé;i%:l
and volume attenuation functions which describe the water column itself: §E§§q;

PaNd

(5) Given: The volume scattering function o(y;g';g) =

A
.r_\::.-."

s(y)p(ysu',4"5u,6) and the volume attenuation function a(y) for ?{ﬁgﬁ
.:\;.x::x

Lt e N

u'_ e

the water column, x < y < z, :.Qbﬁ
» bl W8 -

e
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Compute: The scattering-attenuation ratio w(y) = s(y)/a(y) and the :-::5.;::
0
AN
quad-averaged phase function p(yjr,s|u,v), using (3.11) as v .:
R
evaluated in (11.3). g
+ ety
Compute: The spectral phase functions p (yjr,u|2) using (5.5b) as :’:\_:
J-,.z'-"."
specialized in (5.6a)-(5.6d). -
: . . . . A )
) The volume scattering function o and volume attenuation function a may in :;)
EAEAD.
some cases be given as functions of the optical depth y. This is likely to be :':.:;:;‘_
gt
--..-’(\_'_‘
the case if ¢ and a are analytic functions, based perhaps on theoretical T
T
work. On the other hand, an experimenter measures optical properties as a E:'::: 4
n}- f &
furction of the geometric depth 7. Thus a set of optical properties measured '0’0',
Ay
'_."'CJ
at geometric depths must be converted into optical depth form before being °
. . .. . By
used as input to the Natural Hydrosol Model. This conversion is easily made : 5
A
S
by integrating the equation which defines the optical depth y: S

B _x =
LT
3

..
d ]
Ez = alzg) , (7.1) *."-\:;
4 oA
atht
where a(z) is the {measured or given) volume attenuation function at geometric "
i\‘ Y
depth z. u.;.:f::’_
N
ey
Let a(z) be given at a set of geometric depths g;,5,, «-- »%2CEO" Then :-'.:-:._‘:'
. : . . . AR
the simplest approach to integrating (7.1) is to assume that a(g) varies e
"”'p,"\‘."
linearly with ¢ between each (g;,%;,;) pair of points, that a(z) = a(zg,) if R
¢ S g1, and that alg) = altzepg) if ¢ 2 gyppge One could also use a more
sophisticated approach, such as spline fitting, to define a continuous a(z)
. . . Yo
from the measured set of a(z;) values. With the linear assumption, a(z) has R A
RAN Q0
s SO
the form a{g) = a; + b;z for ¢; < ¢ <¢;4y, i =0,1,...,2GE0, where g, = x and :}:‘_J-:
-:NJ\-‘:‘
N n LI

tzcgo+l = 2. [Integrating (7.1) with the linear form of a(g) gives




= L 2 - -1 2
y(z) a;g +b.g2 + [y(ci) a;g; - %b.g?l, (7.2)

where 7; €7 < gj,), and where

a(c.+l) - a.(ci a(z

1
—Ci

) - G(;i)

i+1 - %4

- i+l
i 4

)
(]

alz.) - ¢.
! o TS

Equation (7.2) can be used to find the optical depths at which the measured

scattering and attenuation functions are given.

A
. .+
We thus consider w(y) and p~(yj;r,s|L), as computed above, to be known at
. . . . . AR
a discrete set of optical depths yi» 1 = 1,2,...,Y0P, where in the notation of e
bt
Fig. 1, x < < < +e- < < z. ®
g ’ yi y2 Yyop RS
t J
We note that steps (2)-(5) above are independent. Therefore we can N :Q:l
N‘c":
perform these initial computations and save the results for several selected :?.::::'::::
ittt
wind speeds, bottom boundary types, incident radiance distributions, and water . ]
DA
types. Then a great many radiance solutions can be obtained from the various :‘ o:?.
Wt
combinations of the above inputs, without having to repeat the initial EE:‘O,- :::
Ao
computations. In practice, the computation of the surface boundary spectral @
AT
. . . . A0
arrays in step (2) is especially expensive, and step (5) may or may not be ..',.-a
o :
t- ~l‘
expensive, depending on the nature of the scattering function. Steps (3) and :u“:Q""
e e,
(4) are trivial in cost, so that it is generally more convenient to repeat ..

these calculations with each model run than it is to save their results,

In summary, we now have available the following quantities:

L J
A (a32) , a lxm incident radiance matrix for each ¢-mode (2=0,1,...,n). }.:_ﬁ:f -
A
_t_p(a,x;k|9.), an mxm surface transmittance matrix for each p value, ;\)‘:'\-‘\
| EL
! p = 1,2; and for those k and 2 values for which (k+2) is even (k and Tl
@
£ =0,...,n), and likewise we have the remaining air-water surface ,::-__.\ "
Vot
) . . . Snindy
transfer matrices t (x,a3k|2), & (a,x3k|2) and £ _(x,a3k|2). ROGANE G
-P -P -P AR A
I
ROREHLY
R
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ﬁp(z,b;l), an mxm bottom reflectance matrix for each p and % value,
p=1,2; 2 =0,...,n.

a(y;), the volume attenuation function on a set of optical depths Yi»
i=1,2,...,Y0P.

ﬁt(yi;r,u|2), the phase function amplitudes on the set of optical depths

yi» and for ryu=1,2,...,my and £ = 0,...,n.

b. Assembling the Solution

We are now prepared to enter the main solution algorithm. At this point
we must select a set of depths Yi» j=1,2,...,YOUT, where we wish to save the
model output for later displays and finding of derived quantities. We fix the
endpoints at x and z, i.e., X = y; < yz € «++ < Yyour-1 < YyouTr = %» but
otherwise the internal depths yj are arbitrary. Note that the set of depths
¥; where model output is desired is independent of the depths y; where the
inherent optical properties of the water are specified. Figure 6 compares the
various depths which have been referenced in the preceding paragraphs.

We now proceed to integrate the Riccati equations for each i-mode. We
enter a loop over all & values, ¢ = 0,1,...,n, where for each & value the

following computations are performed.

(1) Compute é(yi;l) and i(yi;z) using (5.20b-e). The arrays are

computed at each y; level where the optical properties a(y;) and tﬁ:ﬁi*:?
Loy
+ . AN
p'(yi;r,ull) are known, i = 1,...,YOP. }i?:-:§
OIS
(2) oObtain #,(z,b;2) for the desired bottom boundary. This array may ARSI
. . . 'Lty
have been previously computed in step 7a.3, or it may be computed at th\ G
oA ]
NRYAS
this time. e
-..\‘%\
Y, ‘
(3) 1Integrate the Riccati equations (6.43) and (6.44) with initial Lty
conditions (6.47), in a downward sweep from x to z. The integration ¥ “\Q&,i
AN
NG
A
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Figure 6.--Comparison of the three sets of depths referred to in the NHM. To
the left the "o" symbol shows the geometric depths where attenuation and
scattering functions are measured, and in the center "@" shows the
corresponding optical depths. To the right, the "—" symbol shows the
optical depths where the Riccati equation solution routine requires
values of the local reflectance and transmittance matrices § and i and
"@®" shows the optical depths where the final radiance solution is to be
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(4)

requires that g(yj;%) and %(y3;%) be continuous functions of y. Such

continuous functions are defined as needed by linear interpolation
of the known é(yi;!) and j(yi;z), which were computed in step (1)
above for the discrete set of y values, yi» 1 =1,2,...,Y0P. The

interpolation is done element by element; thus for example

6lysryuse) = 8(y.3r,u3e) +

R R (R4

[o(yi+1:r,u;1) - B(y;3r,u30)] —;:;—:—;; ,
where y. <y < y;,;. The results of the integration, g(yj,x;l) and
Z(x,yj;l), are saved at each optical depth Y3 j=1,2,...,Y0UT,
where the solution field is desired.
Integrate the Riccati equation (6.48) with initial condition
Rp(z,b;l) = fp(z,b;l) (cf. eq. (6.58)) in an upward sweep from z to
x for p = 1,2. The results Rp(yj,b;l) are saved for & = 0,...,n and

= 1 and 2, at each Y3 level where the final output is desired.

There are two types of bottom boundary that may be considered. (i)
The matte bottom at a finite depth z below x. In this case, as seen
in (5.54), only the & = 0 case for t,(z,b30) is nontrivial. The
Riccati equation (6.48) need be integrated only with #,(z,b30) as
initial condition. Thus we need find only El(yj,b;O) at various
levels Y3 (since R (y ,b32) =0, 2 = 1,...,n) and we see also that
gz(yj,b;!) =0, 2 =0,...,n3 in the case of a matte lower
boundary. (ii) The medium X[z,=] constitutes the homogeneous region
below the boundary plane at level z. The initial matrices ﬁp(z,m;l)
needed here are described in (10.8) and (10.9), and in the

discussion below (10.9),
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As we cycle through steps (1)-(4) of this %-mode loop, we save the ‘ i,\_
N

XX
S

matrices g(yj,x;!,), z(x,yj;l), B_;(yj,b;ﬂ.) and gz(yj,b;l) for each Y3 and ¢
value. At this point we now know the standard reflectance and transmittance

operators for each Y3 level, from x to z, where output is desired. patatileys

BN
oy
The invariant imbedding rule (6.35) written for the three levels (a,x,b), u.o‘.:fu‘!*

and which incorporates all modes at once, is '-";‘:::'::;‘
“:l“l."

bty

gl

- + - ey,
A (x) = A (b) R (b,x,a) + A (a) T (a,x,b) . St
P P -p P -P

Note that since the boundary surfaces X[a,x] and X[z,b] are involved, R and T .h,::t...o,‘
are in general different for the p = 1 (cosine) and p = 2 (sine) cases. Yy
However, there is no light incident from below on the bottom boundary, that ST Ay

is, é;(b) = 0; and we are left with just Sonond

A (x) = A (a) T (a,x,b) ,
-P P -P

or

A (x)

A (a) T (a,x) [I - R (x,b) R (x,a)]"! , 'f:‘C:U'\
P -p P - P -P

Here we have used (6.33) to write the complete transmittance in terms of the '&b" baot
. . .
standard transmittance and reflectance operators. Since _'I_‘p(a,x) and gp(x,a) i

refer to the upper surface boundary, we can write the last equation as Nanais

AT(x) = AT(a) & (a,x) [I - R (x,b) & (x,a)]-! . (7.3) RGNS
—p -p -p - ~-P ~pP

Since (7.3) is written for levels (a,x,b) and involves the anisotropic surface ADLSAN:

X{a,x], this equation of necessity involves all fL-modes and does not decouple

as does the corresponding equation (6.35), when interpreted as written for

‘\
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I,
P
levels (x,y,z) in the water column. Ep(x,b) is an m(n+l) x m(n+l) block- ::: .'IR'::
o )
o, s
. . . . iy O
diagonal matrix composed of the mxm matrices gp(x,b;z), as in (6.24). Since oy ;u
]
the dimensions of the matrices in (7.3) are quite large, finding the indicated Eﬁ;‘bﬂﬁ
P
inverse could be numerically troublesome. However, the matrices are sparse 3"¢$3¢3
) I'.I W,
. . Wty
and their elements are bounded, so we can expect that the approximation AN
TR
J ; P
I -R (x,b) £ (x,a)]=! = I + R (x,b) £ (x,a)] (7.4) A0 *
[_ _p ? _p 9 ] - 'Zl [_p b4 _p 14 (3 &F- ﬁ*
J X )" E -!$
. , , : AR
should give an acceptably accurate inverse with only a few terms in the sum. .gkﬂth.
O
. 'ﬂ..'t.
In practice, J = 3 or 4 gives quite good results. The computer code handling :}gzgﬁsh
OO0
. . etk
of (7.3) and (7.4) is discussed in §l2b, below. .
A brief comment on (6.55) and (7.3) is perhaps justified; both equations i:.:fag
M) hl
i
give é;(x), but in apparently different forms. Equation (6.55) is a boundary &é? §¢J
.. . . . - - ASB e,
condition relating the final solution amplitudes ép(x) to ép(a) and é;(x), ARty
r-:"'-‘P; =
whereas (7.3) relates A;(x) to A;(a) only. At this step of the solution iﬁk?fﬁj'
- - e N
3 . . V: '!n.:
procedure, é;(x) is not yet known, so (7.3) is the only available means of ?_%S&;v
Nre
obtaining é;(x). The two forms of é;(x) are however equivalent, as is easily win el
Ly R~
shown by substituting the form of A;(x) from step 5 below into (6.55) in order o G

to obtain (7.3). The powers of j in the expansion (7.4) can in fact be

TS P A ]
: B
ey
NV R X

interpreted physically as the higher order scattering contributions to the
total solution. The zero order term of (7.3), é;(a) ip(a,x), is just the ;?gixﬂ;j

direct beam, or unscattered, contribution of é;(a) to é;(x). Values of J = 3 '}ﬁ?ﬁ?\‘

o
d
R
%

or 4 used in (7.4) represent 6th and 8N order scattering, respectively.
(5) Compute 5;(x) for p = 1,2 from (7.3) and (7.4).

The invariant imbedding equation (6.34) now written for (a,x,b) is

+ + - Dttt
A (x) = A (b) T (b,x,a) + A (a) R (a,x,b) , Nt Ny
-P -P -P -P ~p
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which, since A (b) = 0, reduces to

AT(x) = A (a) £ (a,x)[I - R (x,b) # (x,a)]-! R (x,b) ,
P -p -P - -P -Pp P

where gp(a,x,b) has been written out using its definition (6.30), and Ip(a,x)
and Ep(x,a) have been written in their specific boundary value forms. But

from (7.3), we see that this last equation is just
A+(x) = A (x) R (x,b) , (7.5a)
~P -P -pP
and since gp(x,b) is block diagonal, this equation decouples to
A+(x;2) = A (x32) R (x,b38) , £ = 0,...,n. (7.5b)
-P -p —P
The next step of the solution is then
(6) Compute ég(x;l) for p = 1,2 and for each 2~mode, using (7.5b).
At this stage of the solution we have the upward and downward amplitudes
just below the water surface, at y = x, and the effects of the anisotropic
surface have been fully accounted for. We can now find the amplitudes within

the water column, x < y < 2, using the invariant imbedding relations written

for levels (x,y,b). From (6.31) we have
- + -
ép(y;l) = ép(b;l) §p<b,y,x;z) + A (x50) zp(x,y,b;z)

which, since é;(b;l) = 0, reduces to (cf. 6.33)
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A;(y;l) = _@;(x;z) T(x,y3;2)(I - gp(y,b;z) gp(y,x,;ﬂ.)r1 (7.6)

for £ = 0,44.,0.
Since levels (x,y,b) involve only the isotropic water and the isotropic lower
boundary, the %-modes decouple and this form of the imbed rule can be
evaluated separately for each i-mode. The T and R matrices in (7.6) are known
from the Riccati equation integrations. Thus we are ready to
(7) cCompute é;(yj;l) for p = 1,2, using (7.6), for each interior y
level, Y25¥39°**9Yyour = %» Where final output is desired, and for
each %-mode.
The invariant imbedding rule (6.28) now written for levels (x,y,b) is
+

+ -
ép(y;l) = ép(b;l) Ip(b,y,x;l) + ép(x;l) gp(x,y,b;l) ,

which, since é;(b;l) = 0, reduces to (cf. 6,30)
. ) .
ép(y;z) = ép(x;l) T(x,y32) (I - Ep(y,b;l) gp(y,x;l)]“ Ep(y,bzl)

or, by (7.6), to

At (yse) = A (y31) R (y,b30) (7.7)

for £ = 0,...,n.
The next step is then
(8) Compute é;(yj;l) for p = 1,2 using (7.7), for each interior y level,

Y21Y3s+++sYyqur = %» where final output is desired, and for each

f-mode.
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incident amplitudes -
A~ (a; 2) from 7a(2) 7

upper boundary
spectral arrays —>
i(a, x), etc from 7a(4)

lower boundary
spectral arrays —>
i(z, b; #) from 7a(3)

inherent optical

pE(y;; r, ul®) from
7a(5)

¢=0

P
'

-

$ INITIALIZATION

properties a(y;) and - —

SOLUTION STEP

compute j(y; #) and T (y;; 2) )
for all y, using (5.20b) — (5.20e)

\
obtain #,(z, b; ¢) (2)

\
integrate Riccati eqns 3)
(6.43) and (6.44) ina :
downward sweep
integrate Riccati eq.
(6.48) in an upward 4)
sweep

\

[ 0—0 +1
| NO isé>n?
YES
TO STEPS

140

PCA G LR R - e e L .
iRt P
ISR < O Sas

o PG )
S

Ay, "'.A'?"ﬁ'

.l *‘I ..\-

L]
TIRYR
R

‘1 (XY
O ‘(:c'
:"“ ‘! U

W ::;'
RO
°

L
B

.
\J
'4

‘
’ 's

(
2208

Ui 4
Ny .:

St

)



RS -,,".‘v 4,99, e“l oqu'-‘-' A e v *gat - Yo tat 4, *_ Ua®, "\4‘ I" i'-'-. ‘YA VRY, ‘.‘I R _ »,
§7
FROM STEP 4

!

compute AZ(x) for ail
#-modes simulatneously,
using (7.3) and (7.4)

)

compute AZ(x; #) using (7.5b)

(5)

(6)

\

compute AZ(y; #) for each
y, and ¢, using (7.6)

)

)

compute A,, (y; &)for each
y; and 4, using (7.7)

(8)

)

compute A? (a) for all
#-modes simultaneously,
using (6.56)

9

\

compute radiances
N=(y; u, v) at all
levelsy = a, x, ...
using (5.3)

(10)
. y‘, sy Z

Figure 7.-~Flow chart for the ten-step solution procedure described in §7b,
The incident radiance amplitudes, air-water surface spectral arrays,
bottom boundary spectral arrays, and inherent optical properties of the
water column are computed as in §7a and are assumed known.
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We now have the upward and downward amplitudes at all desired levels in -
.. . Q,.r:'_:'."_r
the water column, x = Yis¥2s *9¥js " s¥yoyr = 2° The only remaining step is };-,i .Z
to compute the upward amplitudes at the water surface. This is done using the " -.
NI
appropriate upper surface boundary condition: .:: ‘E::'"'::
) \
+ . . S ‘l‘::O;::i'
(9) Compute ép(a) for p = 1,2 using (6.56): OO
o U M W]
“5: ﬂ‘
+ + - - n OO0
A (a) = A (x) t (x,a) + A (a) t_(a,x). Iy A
=P —P P -p P PR
FGenei
) l‘(
The amplitudes ég(y), i.e., Ag(y;u;ﬂ.), for u =1,...,m3 and & = 0,...,n "ﬁ"'ii"
AN
are now known for all desired depths a, x = VATDATRARES STRRRES S Nths = z. The ":‘.:.s:::‘:',
Welwte'e
: AR

only remaining step is to reconstitute the radiance field from these

y § step o
amplitudes: 1
‘.&n ’v !
) (%
(10) Compute N‘t(y;u,v), for (u,v) over the respective hemispheres, from “:::‘\9:‘:'::
AINAGA
(5.3), at all required depths y = a, x = y,, YasesesYjsees¥your = z. "l::"‘:
L K )
The solution is now complete. The above steps are graphically summarized N
AT
NS SRS
in Fig. 7. LSS OY
;?:_f'.:’l-"'?.'f_«~
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AL
{ 8. DERIVED QUANTITIES RN
There are a number of interesting quantities which can be computed from L
: ATty
the quad—-averaged radiances of the present Natural Hydrosol Model. Among OV
these are the various irradiances, irradiance reflectances, distribution A
functions, K-functions, backward and forward scattering functions, and
e . . . . - . T 1
eccentricities. Also, various checks on the present numerical radiance model :\-,"'.\-‘_;'- ol
itself can be made. In particular we can make certain that our solution e
radiances satisfy the radiative transfer equation. Moreover, graphical output S
of the radiance distribution can be displayed as functions of depth y, polar

angle 8, and azimuthal angle ¢, for various choices of wavelength of

photons. In this section we list a number of derived quantities, show how

they can be computed from the model output, and explain their significance to :;x;:::
:‘-:;\ 'v.' 3
hydrologic optics applications. 2 \:H- ,
A
@
- . . . P 1D
a. Balancing the Radiative Transfer Equation .H,"..(: o
ot OO0
. . . ’ e,
A complex numerical model and the associated computer code are subject to ply lg ! 0:1,
i
many types of error. Simply removing all typographical errors from thousands "
@
> T v
of lines of code is a major task. As shown in §12, various tricks are used to S
i
. h . ibiliti £ . - .:E_\
store sparse or symmetric arrays, thus creating possibilities for errors in _‘.-\44‘}‘, A
| | o
array indexing. Moreover, the various numerical algorithms may introduce e
o
. . . . . r,
subtle errors. For example, algorithms for integrating the Riccati o ."I
-“‘NJ'\-:{\J' !
. . . . . o LA
differential equations may introduce errors due to taking too large a step Ay .f-:.r:d"“ \
Y
when performing the upward and downward integration sweeps. Matrix TN
@
inversions, or their approximations like (7.4), are another source of purely ';f\;?"*-':'
Sl
o
. . . ) O
numerical error. Therefore, once the solution radiances have been obtained, .:\:u'-u;'.;
i.,'vé_ﬂ*\*
; : . AT TN
the first order of business should be to see that they actually do satisfy the LY N
L
radiative transfer equation. St
i‘.I‘
S
CSASG
Vo
\'-.'f 'l"':
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The quad-averaged radiative transfer equation split into separate
equations for the upward and downward components as in (5.2), and rearranged

for a null check, becomes

+
u dN (y3u,v) _ N+(y;u,v) + w(y) 2 z N+(Y;t»5) p+(y;r,slu,V)

u dy t s

(8.1)
+ w(y) 2 Z N (y;r,s) p (ysr,sfu,v) =0,
rs
for Qv in 2, and
-uuﬂg_S%%ELll - N (y3u,v) + w(y) z z N (y;r,s) p (y3r,s|u,v)
v r s

(8.2)

+

w(y) Z z N (y;r,s) p+(y;r,s|u,v) =0,
rs

for Q,, in Z_. Recall from (5.2) that by convention u, > 0 in both (8.1) and

(8.2). The y~derivatives in (8.1) and (8.2) at level y; can be approximated
by centered differences:
+ + +
dN“(y.3u,v) N"(y. ,3u,v) = N (y. . 3u,v)
1 . i it . (8.3)

dy Yj+1 = yj-l

For an accurate approximation, the three depths (yj-l’yj’yj+l) should be
closely spaced optical depths. If the y-levels are too widely spaced, the
approximation (8.3) can give an inaccurate result for the derivative, and thus
a poor balance for the radiative transfer equation, even though the radiances
themselves are quite accurate. When the left hand sides of (8.1) and (8.2)

are evaluated using the solution radiances, the terms will not sum to zero as

indicated, owing to computer roundoff error, if for no other reason. However,




G . 9 AP VAR VL AP VOO R %288 . 4a® Gt it *dgd ot 1% ot W - - 1, 4 * () (W R W] N W

we expect the net value of the left sides of (8.1) and (8.2) to be small
relative to the individual terms on those sides. We would be in possession of
a good balance if the net values of the left sides of (8.1) and (8.2) are two
to three orders of magnitude smaller than the individual terms comprising
those sides.

Unfortunately, a good balance of the radiative transfer equation does not
guarantee the correctness of the solution radiances. For example, the
radiances can be in error by a constant factor without affecting the radiative
transfer equation. But more subtly, it must be remembered that the solution
radiances are solutions consistent with the computed quad-averaged phase
functions and boundary reflectance and transmittance arrays. If these
quantities are inaccurately evaluated, then the radiances will not be a good
approximation to the true radiances in nature. Evaluation of the quad-~
averaged phase function from a given continuous phase function via the
numerical integration of (3.11) is particularly touchy because of the highly
peaked angular dependence of phase functions. This integration is discussed

further in §ll.

b. Irradiances

We have by definition the hemispherical scalar irradiances

+
[/ N (y3u,0)d2 , a < x <y <z < b.

+

ht(y)

These are usually measured by spherical radiant flux collecting surfaces
exposed to the appropriate upper or lower hemisphere of directions of photon
flow. This equation is easily discretized by using (3.4) to replace the

continuous radiance function by its step function form, as was often done in

§3. The result is
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m-1 2n A ]
h,(y) = ) N (y3u,v) 2.t N (ysm, ) Q- (8.4) i

u=l v=1

!

An even simpler form is obtained in terms of the radiance amplitudes on using W hfdgg
\J

the representation (5.3). Since the quad solid angles Q,, are independent of :!u'l

v

v, (8.4) can be reduced to Y

m
h(y) = 20 ] A7(y3ui0) an_ . (8.5) s
- u=1 @

Note that only the £ = 0 mode cosine amplitudes contribute to the scalar “xqﬁév
M g

irradiance. The total scalar irradiance is defined as G

h(y) = h(y) + h_(y) . (8.6) e e

By inserting a cosine directionality factor |u| into the equation defining the ﬁﬁﬁfifﬁ
"

1,58
scalar irradiances, we obtain the irradiances ;5&; 4
WL

l‘(
hY

Ht(y)

R
v
DS

=

+
I N (ysu,0) Ju| da , a<xsysz<hb

*

-4
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Lo o e
[
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I'd
ny
P4
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<
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These are usually measured by flat plate radiant flux collectors exposed to
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the anpropriate upper or lower hemisphere. Simple derivations lead to the
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quad-averaged forms
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~ TR
m=1 2n + hl:.'l
{ Ht(y) = Z Z N~ (ysu,v) luul 2., * N~ (y3m,-) Iuml e (8.7) -::}'l_‘&
| u=l v=1 PN
| T AT
‘ R
which reduces to oA, o
| N ) '.
P
MR
! L)
2 P
H,(y) = 2n 21 AT(y3u30) fu | ou (8.8) Al
u= o
Note once again that only the ¢ = 0 mode contributes to the irradiance. Hence ...':"a:;.
X R
.. ".lg
both scalar irradiances h,(y) and horizontal irradiances H,(y) can be \"l::f-
b @
determined by using only the transport theory for zero mode amplitudes (cf. m@i
b t
' \
(5.23), and all statements in §6 for the special case & = 0). "" ,:‘.f.
"‘ l.".“
A check on the four computed irradiances is given by the divergence N
®
relation for the light field (cf. H.O., Vol. I, p. 62): ‘,'.c'.}if;
AL
’ (]

$ (H,(y) - H_(D] = [1 - w(]lh, () + b (] . (8.9) R
y ) ®
Recall that we are working with optical depth y; hence the volume absorption \-:-."\’.._-,
function takes the form l-w(y). Equation (8.9) can be computed as ,Q‘.:;ﬂ
‘
(H(y. ,) -H (y. )1 - (H(y. ,) -H(y._ )] RO NS
+ 79+l 3+l + 7 3-1 -1 = [1 - m(yj)][h+(yj) + h—(yj)] , _\j\'&,“. X

(8.10) ;-:'.‘\;Q',)\L

Yie1 T Yj-1

where (yj-l’yj’yj+l) are three closely spaced optical depths, with the same _._'P‘n‘:}k
caveat on derivative evaluation as was made for (8.3). NN

The divergence relation is useful in estimating the local heating rate of SN,
the near-surface water layers in a lake or sea. In this sense it has oA
potentially important applications to climate prediction, by incorporating . .-:-.’._
these estimates in coupled global circulation models for the atmosphere and r\}ﬁ -.?l

oceans of the world.
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4.9 a'd,

c. Apparent Optical Properties

Once the irradiances Hy(y) and the scalar irradiances h,(y) have been
obtained, we can easily compute various apparent optical properties arising in
the two-flow irradiance model of light in natural waters. Some of them are

(cf. H.0., Vol. V, pp. 115-126):*

(1) The distribution functionms,

h, (y) (
= — . 8.11
Di(y) T H.(y) )
(2) The K-functions for irradiance,
K, (y) = st (8.12)
i y = H+(y) dy ° L]
(3) The k-functions for hemispherical scalar irradiance,
k,(y) = = ahsy) (8.13)
+\Y/ = h+(y) dy . .
(4) The reflectance functions for irradiance,
H;(y)
= = -1 .
Ri(y) AN so that R (y) = RZ!(y) (8.14)

The NHM can be used to determine the conditions on sun and skylight geometry,

and size of w(y) that tend to make D,(y), K,(y), and R,(y) essentially

* The notation continues to be formed by computer programming needs (see
footnote to (5.3)). Ordinarily we would write '"D(y,*), h(y,*), H(y,®)",
etc. In the last analysis, however, it is the concept that matters, not
how it is clothed.
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independent of depth. This will have consequences for the validity of the
two-flow model for irradiance fields in natural hydrosols. For example, the

constancy of D,(y) with depth y is an important assumption of the two-flow

irradiance model.

d. Backward and Forward Scattering Functions
The backward scattering, or backscatter, function for the two-flow
irradiance model is defined by (cf. H.O., Vol. V, pp. 10-11)

b,(y) = _Z_I de(g) f da(g') N (y3£') olysg'sg) ,

: B “i

which can be discretized in the usual manner to become

+ -
bi(y) = %i%%j é g 2y Z Z N~ (ysr,s) p (r,s|u,v) (8.15)
= Dt(y) s(y) eb(y;i)
where we define
. -1 .. -
sb(y,i) z ht(y) g g 2 o z Z N“(y;r,s) p (r,s|u,v) . (8.15a)

Here s(y) is the volume total scattering function of (2.6). ep(yit) is the
eccentricity function for the backscatter function and generally lies between

0 and 1. Note that only the p~ phase function appears in (8.15), since £' and

g are always in opposite hemispheres. As always, sums over quads are
evaluated as in (3.2). 1In the same fashion, the forward scattering function

for the two-flow irradiance model is defined by
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which becomes S 0N
Y
) ’a‘::-:.‘t‘
ALY,

£,.(y) 3¢ )) ) 2., ) Ni(y;r,s) p+(r,s|u,v). (8.16) '\,:ig'r :
- uv rs :::“l."l
LX)

;

0y

Di(y) s(y) ef(y;i) RH

where we define :::‘:‘"«'":"

1 + + .
e.(ys2) z 2 Q z 2 N (ysr,s) p (r,s|u,v) . (8.16b) P
f h_zysuv uv 2 o 's.
eg(y32) is the eccentricity function for forward scattering and generally lies i
between 0O and 1. Here only p* appears, since £' and £ are always in the same Py

hemisphere. A check on these calculations is provided by X "'1‘

L %%
£

ef(y;i) + eb(y;i) =1 (8.17)

o]
75
2]

5~

Al A
'I
]
P4

)

P -‘,:

s
® 5 2

-’f-: .03,-_-

and

7

»_m
o,

s(y) Di(y) z s, (y) = fi(y) + b (y) . (8.17a)
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o
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which follow from the quad-averaged form (11.5) of the normalization property
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(2.7) of p(ysu',6'5u,6).
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There is a close relative of b,(y) that is of particular interest to the

N

~
L4

two-flow model for irradiance (cf. Preisendorfer and Mobley, 1984, Eq. (12))
and that is the mean backscatter coefficient defined by writing
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b,(y) = b, (y)/D,(y) (= s(y) ¢, (y;1)) (8.18)
‘ 1;;3
It may be the case that, in some media under natural lighting conditionms, .'E.':g?’:s
3*(y) is nearly equal to b_(y). This will be the case if eb(y;+) z eb(y;-). ﬁﬁ?'ﬁf
When this is so one writes "b(y)" for this common vaiue of b (y). The present g:r%'%
NHM can explore the likelihood of this possibility. Whenever the NHM verifies éggéﬁg
that, to good working order, S+(y) = b_(y), then the procedures of WY &353

Preisendorfer and Mobley (1984) can be used to find the volume absorption
function aly) and the mean backscatter function b(y) and hence by(y) of a
natural hydrosol from measurements of the irradiance quartet [h,(y), H,(y)].
When it is the case that 3+(y) #+ b_(y) and when the ratio E+(y)/3_(y) is
unacceptably far from 1, then it may be possible to establish an empirical

link between E*(y) and 3_(y) using the NHM.

e. Horizontal Radiancesj Horizontal Equilibrium Radiance

The partitioning of the unit sphere = into quads does not have a band of
quads centered at u = 0, i.e., on the horizon where 8 = 90°. However, it is
often of interest to have the horizontal radiance N(y;0,¢) in tabulated
displays. The radiative transfer equation (2.8) with y = 0 gives the desired

radiance. Thus, for £ such that p = §-k = 0 (cf. Fig. 1), we have

N(y3E) = wly) | N(y3£') plysc'se) da(g') R

A

v %)
‘t‘;“-j
P L]

a=i(y) [ NCy3£') olyse'se) dace’) o)

= LR

|
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Nq(y;0,¢) . (8.19)
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Nq(y;0,¢) is known as the horizontal equilibrium radiance, since as one

advances underwater in a horizontal direction = (0,¢), Nq(y;0,¢) does not
change in a plane-parallel setting. In the atmosphere, one would call

Nq(y;0,¢) the "horizon brightness".

¢

0
The quad-averaged form of Nq(y;0,¢) does not exist for the reason 4]
o~ W Y
mentioned above. However, the general quad-averaged form of (8.19) does 3:§\ﬁtf
:J:J:,.'-

exist: .ﬁf}$~
.._;.f‘._v_ﬂ.“ ]

Py

@
+ Y
N;(y;u,v) = w(y) z z N(r,s) p(y;r,s|u,v) (8.20) ;-hgagﬁ
r s ( 'Q."':“
n;«'\\h
for Q,, in =,, respectively. The quad-averaged approximation to Nq(y;0,¢) is & 'if‘
«‘i, , 
therefore P! s
RIS
RIS
+ - 8t

Nq(y;o,v) = B[N (y;l,v) + N (y3;l,v)] (8.21) puy p
REAUA
o
for v=1,...,2n and x < y < z, e Jq\ﬁ
Rt
Ko el

f. Diffuse Radiances Sy
* 7: R
The radiance N-(yju,v) is the total radiance, which is the observable sum ;\jibvk
AR

of the directly transmitted, or unscattered, radiance N%(y;u,v) and the
diffuse,* or scattered, radiance Ni(y;u,v). Since near the surface of the
hydrosol the direct beams from sun and sky are usually many orders of
magnitude stronger than the diffuse light, it is often desirable to separate
the direct and diffuse radiances, especially for simple analytical models or

for descriptive graphical output.

* When we drop the t_guperscripts, then Ni(y;u,v) is traditionally written as
"N*(y3u,v)'", and Nj(ysu,v) as "NOo(y;u,v)".
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The radiance from the sun incident on the water surface is by convention .:"::..:::
.(' I'Q.!
entirely composed of a direct beam, N (ajr,s) = Ny(ajr,s), since we consider f,uﬂl:f
¢ .
atmospheric scattering as bringing to us radiant flux whose scattering order c..“o,
U
. ) - ""H‘u
index can be set to zero.* Thus, we can have direct beams N;(ajr,s) from any \ :::E::::
LAO
. Yyt
number of quads Qrs' After light enters the water, upward and downward . ':.:‘.!g:.:;
diffuse radiances are generated as described by the scattering term in the ":;:53;{;
TN
radiative transfer equation and by reflection of the downward direct beam back r‘i’:’x:f:
LR
) N ."v‘\ .‘J., %
from the bottom boundary. The upward radiance in the present model is “{;:’3-’
)
composed entirely of scattered light, i.e., N+(y;u,v) = N;.:(y;u,v), since there ,?;.;5‘,;.‘
dhnn!
. Dty oy
are no incident light sources at the lower boundary. The incident direct '; %ﬁ(
. X
beam, Ny(ajr,s), is transmitted through the upper surface via (3.17) in the .g;’_e:g:«
®
0 o
form ::":E;'E:::.
)
"&'121\
'.:'k;:::::
- - (OO
N, (x5u,v) = z 2 N,(a3r,s) t(a,xjr,s|u,v) g'v'v_"f
rs o
"-‘ X7 :.?.‘
: . . A
(since there is no upward direct beam Nj(xju,v)). The direct beam is then e ]
La¥
transmitted to optical depth y by a simple exponential law of decrease, :-*Eb; -7
9
(TINX %
- - ey 3
N, (y3u,v) = N (x3u,v) exp[-(y-x)/luu“ , (8.22) ﬁ‘_{‘:
Al
. . - -
which is also obeyed by the associated amplitudes Aop(y;u;z). The argument of RS Gy
A
N
the exponential, (y-x)/luul, is the optical path length measured along the R\{}.:
o
DN
path of the direct beam descending from level x to level y. Using the total -:5};-‘_-*
radiances from the solution of the numerical model, and the direct beam E\'.Zé,l‘
) %
radiances from (8.22), we can find by definition the downward diffuse radiance . '\:‘.‘
ot e
‘.-"‘i"’.n ¢
Taa Ny
- - .
* This is based on the principle of relative scattering order. See "\ \
Preisendorfer (1965, p. 78). ) -
& .
\'\ A )
»
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N;(y;u,v) z N (y3u,v) - N;(y;u,v)

and the upward diffuse radiance (8.23)

+ +
N (ysu,v) = N (y3u,v)

g. Path Function, Equilibrium Radiance

In the discussion of (2.2) we noted the importance of the scattered
radiance term. It is of interest to use the solution of the NHM to plot this
term as a function of direction § and depth y. Specifically, we are
interested in the path function (in standard, radiometric, non-Fortran

notation):
N(ysg') olys;g'sg) da(g') (8.24)
or in the quad-averaged approximation:

N, (ysu,v) = s(y) z z N(yir,s) plyjr,s|u,v) = aly) Nq(y;u,v) (8.25)
rs
Q in E

uv
where we implicitly define the equilibrium radiance Nq(y;u,v) for general quad
direction (u,v) (cf. (8.19)).

An important simple model of the light field can be built from N.(y;g)

or, equivalently, the equilibrium radiance Nq(y;u,v) if the latter decreases

nearly exponentially with depth y (cf. H.0., Vol. I, p. 81).
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h.

Another quantity of interest in the study of light fields in natural

hydrosols is the K-function for radiance (cf. H.O0., Vol. V, pp. 125-126):

.p dN(y;g)
P “wyp T
EeE, x<y<z

or in quad-averaged form,

~1 dN(y3u,v)
N(ysu,v) dy

K(ysu,v) =

qu in 2, x £y <z

An important phenomenon in infinitely deep homogeneous hydrosols is
referred to by the asymptotic radiance hypothesis, in which the radiance
distribution below a certain depth is held to decrease exponentially in size

without change of shape. Thus for y > y,, in the hypothesis it is assumed

that

N(y3g) = N(y,38) expl-k_(y-y,)]

At such depths y below y,, it follows from (8.26a) that K(y3f) is very nearly

some constant

k /a

K(ysg)
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S

bAoA, n..h'!'

e

) L
S Yy
o
O]
R
B
A




ALt ghE At ooV VR V3 060”0 Voo ek dat (it B2 G283 000 8 00 10 6 & 50BN SRe Rl hte gt fatoval tat tod Nat tak b 4

§8

for all § in 2. (Recall that y is dimensionless optical depth; hence k_ has
units m~!,) The NHM can be used to explore this phenomenon. In particular,
given conditions on surface winds, sky and sun geometry, and values of
scattering-attenuation ratio w(y), y, can be determined in (8.27) and k_
evaluated. Such knowledge is of importance to the practical aspects of
hydrologic optics (cf. H.O0., Vol. V, §10.7 and §10.8).

We note in passing that K(yju,v) in (8.26b) allows us to reformulate the
quad-averaged equation of transfer (3.12) into the form

N (ysu,v)
q (8.29)

N(ysu,v) = I+ u K(ysu,v)
which is very useful in exploring asymptotic radiance distributions (cf. H.O.,
Vol. V, p. 243, Eq. (16)). Eq. (8.29) is the canonical form of the equation

of transfer.

i. The Radiance-Irradiance Reflectance

The ratio ry(y) defined at any depth y, a < x <y <z < b, by

rN(y) = N (ysm, - )/H_(y) (8.30)

is sometimes of use in the remote sensing of seas and lakes (Austin, 1980).

In such exercises, it is of interest to estimate the upward radiance N*(y;m,-)
of the photons within the medium (so that x < y) or at the surface of the
hydrosol, (so that y = a) knowing only the downward irradiance H_(y) there.

If some idea of the size of the ratio rN(y) also exists, then

N (y3m,-) = ry(y) H_(y) is estimable. The present Natural Hydrosol Model can

yield estimates of rN(y) over all depths y under a wide variety of lighting

and wind conditions on the hydrosol surface.

=
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j» The Upward Irradiance-Radiance Ratio

Another ratio of current use in the remote sensing of lakes and seas is
the Upward Irradiance-Radiance Ratio Q(y) defined by

H, (y)
y) = — (8.31)
N (y3m,-)

This ratio is also of interest to in situ measurements of the light field.
With current technology it is simpler to measure N*(y;m,-) than H,(y). Hence
knowledge of Q(y) enables an estimate of H_(y) = Q(y) N*(ysm,:) to be made if
N+(y;m,') is known. The Natural Hydrosol Model can provide represeﬁtative
values of Q(y) for various lighting conditions and natural hydrosols.

Observe that the twe ratios ry(y) and Q(y) are related to the downward

reflectance function R_(y) = H, (y)/H_(y) by

Qy) ry(y) = BR_(y). (8.31)

Hence knowledge of any two of these three factors determines the third.

k. Contrast Transmittance of the Air-Water Surface

When visual searches are made from above the hydrosol for submerged
objects, a key determinant of the visibility of the object is the optical
state of the air-water surface. If the surface is agitated by capillary waves
and the sky light is brightly reflected in the surface, the visual signal is
not too readily transmitted through the surface to the searching eye. The
contrast transmittance T is an essential property of the air-water surface and

its lighting environment when gauging the visibility of submerged objects (cf.




o

',

H.0., Vol. I, p. 96 and H.0., Vol. VI, p. 42). The form of T for vertically ﬁﬁ?&:’
il

Wyt

upward photon flow is given by ’ .:,

T = Not/n2) + N

0 2
NOt/n (8.32) .-:::-::-
A
where in the context of the Natural Hydrosol Model we have written r;r“

Not/n2 = N*(x3m,-) t(x,a3m,-|m,-)

3
and (8.33) :%%
- L
Nor = Z N (ajr,s) r(a,xjr,s|m,-) 5!(&$:
S t

H

n o~

Here N*(x3m,-) is the upward quad-averaged radiance at level x just below the
air-water surface, and t(x,a;m,-lm,-) is the quad-averaged vertically upward
radiance transmittance for the air-water surface (recall the notation
convention in (3.2)). Ngr is the average vertically upward reflected sky and
sun light in the air-water surface, while NOt/n2 is the radiance transmitted
upward through the surface. Observe that the smaller Nygr is, relative to

N%t/n?, the closer T will be to 1, and hence the better the chance of seeing a

submerged object.
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: 9. COMPUTATION OF THE AIR-WATER SURFACE REFLECTANCE AND TRANSMITTANCE FUNCTIONS
g
1 We consider next the details of construction of the air-water surface

boundary reflectance and transmittance functions. These functions are

essential to determining realistic light fields within the water column, and

ety

it is now time to discuss how the needed quad-averaged reflectance and

» ) . . .
iy transmittance arrays are obtalned in practice.
.r.‘ o . . 3
N The defining equation for the quad-averaged reflectance and transmittance
[t
¥ arrays is (3.19):
"'
Nﬂ
o 1
0 E(r,slu,v) 2 g~ [[ dude [[ du'de’ £(u',0'5m,0) , (9.1)
uv
s qu Qrs
(o where f(u',¢';u,4) stands for any of t(a,xju',¢'3u,6), t(x,asu',0'5u,0),
o
53 r(a,x3u',0"'5u,0), or r(x,asn',0"'3u,6), and £(r,s|u,v) denotes the
-..:.
é‘ corresponding quad-averaged quantity t(a,x;t,s|u,v), etc. If the point
. b - . e
‘J? reflectances and transmittances f(u',¢'3u,4) are known in analytic form, then e
b h,‘:f
’, . . . . . N
o~ (9.1) can be analytically or numerically integrated to find the associated Q;
1 et
) B . . N 'r"\-
{ - quad-averaged quantities. Thils procedure was illustrated in §3g for the case e
T of a matte reflectance. For the anisotropic upper boundary, however, the
.F:'
‘ﬁx analytic form of f(u',¢'s;u,¢) is not available except for the case of a calm,
1
RN
s level sea surface, for which the point reflectance can be related to the
.}5 Fresnel reflectance formula. For the general case of a wind-ruffled sea
n . . )
v surface, no adequate analytic treatment of the optical properties of the sea
L
\-l
.- surface has yet been made.
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~
o
NG
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a. A Ray-Tracing Model

However, a model does exist for the numerical computation of the needed
optical properties. This model (Preisendorfer and Mobley, 1985 and 1986) uses
Monte Carlo simulation to trace individual unpolarized light rays through
their interactions with the wave facets of a simulated sea surface. The
possibility of multiple scattering of light rays and of shadowing of waves by
other waves is included, and the results are obtained as a function of wind
speed. In this section we will show how the ray-tracing model can be used to
compute the quad-averaged quantity f(r,s|u,v). Only a cursory description of
the model will be made; the details can be found in the above references.

The ray-tracing model works as follows.

(1) A finite region of the mean water surface is resolved by a hexagonal
grid of triangles, as shown in Fig. 8. At each triangle vertex the sea
surface elevation is defined, so that the waves are represented by a set of
triangular facets. These facets are contained in the hexagonal domain (the
cylindrical region of space) defined by the hexagonal grid. Four such facets
are shown in Fig. 8. The sea surface elevations are determined by randomly
drawing the elevations from a normal distribution of zero mean and variance
02. This variance o2 is a function of the wind speed (see discussion below
(3.22)), and is so constructed that the resulting wave facets obey the same
wave-slope wind-speed statistics as the actual sea surface. Drawing an
elevation at each triangle vertex of the hexagonal grid generates one
realization of the random sea surface.

(2) After a particular surface realization has been generated in stage
(1), a light ray of unpolarized unit radiant flux is aimed toward the surface
from any chosen direction. Figure 8 shows such a ray entering the hexagonal

domain at point A. Every such initial ray eventually strikes a surface wave
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facet, as at B. In general, each encounter of a ray with a wave facet
generates both a reflected and refracted daughter ray, whose directions are
determined by the law of reflection and Snell's law, respectively. The
radiant flux contents of these daughter rays are determined by Fresnel's
formula. The daughter rays may undergo further encounters with other wave
facets. As illustrated in Fig. 8, the first refracted ray at B, heading
downward through the water, leaves the hexagonal domain at D without further
scattering. The first reflected ray at B, however, intercepts another facet
at C, generating two more rays. The reflected ray starting from C leaves the
domain at E. The refracted ray starting from C encounters yet another facet
at F and undergoes a total internal reflection before leaving the domain at
G. Thus the initial ray finally results in one reflected and two refracted
rays emerging from the hexagonal domain.

By tracing thousands of rays through their interactions with thousands of
realized surfaces, a statistically stable pattern of reflected and transmitted
rays can be established for a given wind speed and incident ray direction.

The radiant fluxes of the daughter rays can be tallied in order to compute
estimates of various optical properties of the random sea surface. The errors
in these estimates, due to statistical fluctuations in the Monte Carlo
simulations, can be made as small as desired by performing a sufficiently
large number of simulations.

The previous applications (in the above two cited references) of this
ray-tracing model have been to the calculation of the irradiance reflectance,
or albedo, of the sea surface, and to the simulation of sea surface glitter
patterns. However, the ray-tracing technique is ideally suited to the
computation of the quad-averaged r and t arrays needed in the present Natural

Hydrosol Model. We can proceed as follows.
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b. Radiant-Flux Transfer Functions

Let us consider a Monte Carlo experiment in which S air-water surface
realizations are generated. For each surface realization w, w = 1,2,...,5,
one unpolarized parent ray is aimed toward the surface along a randomly chosen

direction in some selected input quad Q. . Let g!

&g denote such a ray. This
h

ray interacts with the wt® surface realization, as illustrated in Fig. 8, and
generates K(Eés,m) final daughter rays emerging from the hexagonal domain

(¢« = 3 in Fig. 8). The parent ray 5;5 is assigned a unit amount of
unpolarized radiant flux, P = 1, At each interaction of a ray with a wave
facet, the radiant flux of the incident ray is apportioned to the daughter
rays according to Fresnel's formula. Thus when the parent ray intercepts a
wave facet, the reflected daughter ray is assigned a radiant flux of magnitude
Pr,, where r, is the computed Fresnel reflectance, and the transmitted ray is
assigned a flux of P(l-r;)., If the reflected daughter ray then intercepts
another wave facet, as in Fig. 8, the reflected ray receives a flux Pr;r, and
the transmitted ray receives Pr,(l-r,), where r; is the Fresnel reflectance
for the second ray-facet intersection. In this way it is possible to build up
arbitrarily long products o Fresnel reflectances and transmittances. Let
H(Eés,gj(g;s,w)) be the product of the Fresnel reflectances and transmittances
of all the daughter rays aloug a single unbroken path through space which
connects the parent ray 5;5 with the jth final daughter ray gj(ﬁés,w) emerging
from the hexagonal domain. The daughter rays éj’ jJ=1,2,.40.,k, as the
notation indi~ates, of course depend on the direction 5;5 of the initial ray

th

and upon the wave facet orientations of the w-" random surface realization.

The Fresnel product is dimensionless and satisfies 0 < H(gés;gj(gés,m)) < 1.

(The product T is 1 only in the case of 5;5 incident on the surface from the
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water side and undergoing a total internal reflection to generate one final N,

daughter ray £).
Now define a radiant-flux transfer function P_, by
S

1 v : '
p_ (r,slu,v) = 2 NZI J_Zl MO, 085 (ELow)) X, (8 (5 0, (9.1a) I

17}

g
\

-o
‘&’_ -1

when Q.. in 2_ and Q,, in 2

1

+
=5
‘)‘l
y & %
il

‘S

v a!
X

ls
o

where Qs in =_ and Qv in 2,. As in (3.4), Xuv(ij) =1 if Ej is in quad Qy?

-
-~

and xuv(gj) = 0 otherwise. The "-" in P__ denotes downward incidence

Qﬁﬁ
2 L7

(Qrs in Z_) and the "+" denotes upward reflection (qu in £.). The sum over j

. £
Sl
&2

adds up the « Fresnel products for all those generated ray paths in space e
around a single surface realization which connect the input quad Q. and the ?\%
output quad qu; this result is then averaged over the ensemble of S surface A
realizations. P_+(r,s|u,v) is therefore a sample estimate of the fraction of Al
the radiant flux incident down on the sea surface toward Qrs that is reflected &

up into qu. This fraction P_,_ can be associated with a unit area of the mean Qﬁﬂﬁ
sea surface and is therefore an albedo (irradiance reflectance) of the random ﬁk;,

sea surface for radiant flux from Q. in Z_ to Q,y in Z,. Three other v,
vy

transfer functions can be defined analogously to (9.la), viz.: NS

_and Q in=_, (9.1b) RS
N

m

P

P__(r,s|u,v) when Q. in

(9.1c) Ny

[H)]

and in
qu

P+_(r,s|u,v) when Qrs in .

and e

P++(r,s|u,v) when Q. in 2, and Q,, in 2 . (9.1d) -,

Since the flux P = 1 of each parent ray £'_ 1is apportioned without loss N

rs

to the daughter rays, it is easy to see that :

" LT AL L I AR LR G Y RS B oy e Y hm A - . n

RN R e e o NN
A, '\’ Ny Y ERNE RN, ANt N, a )‘\-P._- .-4'..’._"._-"'0“,\*"-"
SRS I KR MNP NN IR,
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Z 2 P_+(r,s|u,v) + z z P__(r,s|u,v) =1, for every Qrs in =_, (9.2)
uv uv
qu in 2 qu in Z_

and
z 2 P+_(r,s|u,v) + z 2 P++(r,s|u,v) =1, for every Qrs in E, - (9.3)
uv uv
qu in =_ qu in z,

These equations merely state that radiant flux incident on the water surface
is either reflected by the surface or transmitted through the surface without
loss. A careful algebraic recording of the flux contents of the daughter rays
shows that (9.2) and (9.3) are actually algebraic identities. We also note
that the albedo (or irradiance reflectance) of the sea surface for flux

incident toward Qs is given by
r_(r,s) = z z P_+(r,s|u,v) .
uv

Here the summation is over the hemisphere %, ,. Defining the associated

irradiance transmittance t_(r,s) as
t_(r,s) = z Z P__(r,s|u,v) ,
u v
where the summation is over Z_, we can express (9.2) as
r (r,s) + t (r,s) =1 for every Qrs in & .

A similar statement holds for the upward flux case in (9.3).

.n
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§9

The four radiant flux transfer functions defined by (9.1), and computed
by the ray-tracing model, form the core of the four quad-averaged r and t

functions for radiance, as will now be seen.

Ce Radiance Reflectance and Irradiance Reflectance

The upward (+) and downward (-) irradiances at any depth y are given by

(8.7):

+
Hi(y) 2 z N'(y;u,v)|uu|9uv ,as<x<y<sz<b
u v
or

Hi(y)

i
[~ ]

! H,(y3u,v),
gt
where we have defined
+

Hi(y;u,v) z N'(y;u,v)luulﬂuv , for a< x <y<z<b. (9.4)
Evaluating the downward irradiance at y = a, contributed solely by flux in
quad Q_.., we can write the incident radiant flux per unit horizontal area of
the sea surface (the irradiance) as

H_(a3r,s) = N (ajr,s)fu |2 __.

The upward irradiance H_(aju,v) generated when the sea surface reflects this

incident irradiance is

H,(aju,v) = H_(a3r,s) P_,(r,s|u,v)

166
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since, as we have seen, P_+(r,s|u,v) by construction is the irradiance ’I.'::O.'f
reflectance connecting Qs and Q,,. Using (9.4) this last equation can be el

written 3 v.'."':'
+ -
N (a;u,v)|uu|ﬂuv = N (a;r,s)|ut|9rs P_,(r,s|u,v) s

or

P_"'(r,s||.1,v)Iurlﬂl_s
ME . (9.5) W
Hul¥uv .

N+(a;u,v) = N (ajr,s)

Now we recall the upper surface boundary condition (3.18): vy
N+(a;u,v) = 2 z N (ajr,s) r(a,x3r,s|u,v) + z z N+(x;r,s) -t(x,a;r,s|u,v) . ~ ‘,:::.‘

rs rs n .;

This equation of course holds even if only one particular input quad Qs is :.-\.‘\

illuminated and all others are dark, as we have postulated for the case of NN

(9.5). In this case, (3.18) reduces to R

N*(a;u,v) = N (ajr,s) r(a,x;r,s|u,v) . (9.6) N Qﬁ‘:
.
a \
~.-'~;

Since the incident quad-averaged radiances are arbitrary, comparing (9.5) and i.:::-?}
(9.6) immediately yields (9.7a), below. Equation (9.7a) gives us the E-:.“:?C:::.
connection between the quad-averaged radiance reflectance r(a,xjr,s|u,v) and :"':-:_'E\:E‘C
the quad-averaged irradiance reflectance P_+(r,s|u,v) computed by ray- ;\..

tracing. Corresponding analyses for the other terms of the boundary equations

(3.17) and (3.18) give the results in (9.7b,c,d):

e e W T R NS N TG A TN e Y A L Ve \'_\" Tt
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lu_le

r(a,xjr,s|u,v) = P_+(r,s|u,v) TvTa.

S
Q
u uv
[u

|
'
t(a,x5;r,s|u,v) = P (r,s|u,v) T—ET—EE (9.7b) > W,
syl I ’ - 14 | 14 uu qu ? h:‘:’:“:

(9.7a) AR .5:::

BV
i‘ "
I rl rs &JES&E
r(x,asr,s|u,v) = P+_(r,s|u,v) e (9.7¢) B
ul“uv iy
R
fu_[e

) ‘ '
r rs s’
P++(r,s|u,v) m . (9.74) %:

[}

t(x,a3r,s|u,v)

The two transmittances (9.7b,d) include the m2 effect on radiance pencils .ﬂ&dﬁ

crossing the air-water boundary, where m is the index of refraction. This Eﬁ
follows on noting that, for narrow pencils of photons, we have* ®
in?” \

2 - 2 e - . . \

mu, Q. miu R where the subscripts denote photons in air or water We note . .:¢¢

A

. L0
that the quad-averaged r and t functions of (9.7) are non-dimensional, as ¢§$¥

required. Figure 9 summarizes the ray-tracing computations.

d. Irradiance Balance at the Surface A
s

A requirement for the quad-averaged radiance reflectances and ®
. . - RIS,
transmittances 1s that they conserve energy at the air-water surface. The Ot St
\ L]
\
irradiance balance at the surface for downward incident radiant flux is h

expressed as

R,
r;2§?
XA

S

[ NCGasu,0)|uldacg) = [ N(asu,0)|ulda(g) + [ N(x3u,0)|u]do(E) (9.8) N

+ -

.
v
P

* See, e.g., Preisendorfer (1965, p. 37). Note also that the present radiance
transfer functions are compatible with the irradiance transfer functions
derived in Preisendorfer and Mobley (1985, pp. 48-50). .
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initialization: select quad partition of =,

wind speed, number of surface realizations, etc.

!

————= generate a random surface realization

select a quad Q
in the first quadrant of = (cf. Fig. 3)

!

choose a parent ray &' from
a random direction in Q

!

trace all daughter rays to completion

!

record the initial quad Qy, final quad Q,,,
and radiant flux for each final daughter ray

!

NO /' has a parent ray been shot from each quad Q
in the first quadrant of =?

y YES

YES /. . )
is another surface realization desired?

y NO

tally the recorded ray-tracing results
using (9.1), to get P, (r, slu, v)

!

compute the quad-averaged
r and t arrays using (9.7)

Figure 9.--Flow chart of the ray-tracing model used to compute the quad-averaged

upper boundary reflectance and transmittance arrays.
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The left side of (9.8) is the downward irradiance incident on the water " e
surface from all directions above the surface. The first term on the right
side of (9.8) is the upward irradiance at the surface induced by the incident et
downward radiance only, and the second term is the downward irradiance just 2
below the surface also induced only by the incident downward radiance. Thus
(9.8) states that the energy received from the sky alone by the surface is -;ﬁ?{
either reflected back to the sky or transmitted through to the water column. éﬁ&?w
LY

The quad-averaged form of (9.8) is ®
- + - i
1IN (asr,s)fu fa_ = Y)Y N (asu,v)|u |o  + YN (x;u,v)luulnuv .(9.9) RahY
rs u v u v

We will now show that (9.9) is an identity ~ virtue of (9.6), N*(aju,v) can A
be rewritten in terms of N (ajr,s), with a similar relation also possible for ;F ‘w
N (xj;u,v). If only one arbitrary input quad Q.¢ of the unit sphere = is

illuminated, (9.9) then becomes N

G o T

N_(a;r,s)lurlnrs = é é N (aj3r,s) r(a,x;r,slu,v)luulﬂuv

y:,_.;,-
.“l -
AR

L &
e
a
X -

+ 2 z N (ajr,s) t(a,x;r,slu,v)|uu|ﬂuv , .
u v

r

/!r,
7
f

%
-.’.

or

P XA

7;7‘
GOy

S

-

1
1 = T;:TE_— ) r(a,x;r,s|u,v)|uu|9uv

rs u v

1
* Tola, L) tayxie,sla, vl le . (9.10)

rs uv

'l
<,

3 4 ')'
‘x x fa
724

5
’ ’l t

CAAA
A

'r"?":’ A fl 7’

z,

Substituting from (9.7a,b) for the quad-averaged reflectance and transmittance

reduces (9.10) to (9.2), and an identity is obtained. Hence in the setting of "A‘
. . . . . . i
quad-averaged radiative transfer, {(9.9) is an identity. A corresponding agﬁ:
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result is obtained for energy incident on the surface from below. Thus the IR
NN

ray-by-ray, or local, conservation of energy in the setting of the quad- RAACLION
averaged radiance reflectances and transmittances, guarantees the hemisphere- %ﬁa 0y

wide conservation of energy at the air-water boundary. i““” i

e. A Check on the Ray-Tracing Model

VA,

S '\ n %
5

A direct check on r(a,x;r,s|u,v) can be made for the case of a specular

>

LY
A Y
-‘ »
o
5 %

A

-
L]

surface, i.e. when the wind speed is zero and the water surface is level. In
this case the continuous reflectance function r(a,x;u',¢';u,¢) depends only on y y v
the polar angle 8' = cos~!(u'), since the angle of reflection 8 equals the N ‘
angle of incidence 8' and there is azimuthal symmetry. The Fresnel

reflectance formula for unpolarized radiant flux is

sin(e'-et) 2 tan(e'-et) 2 .itﬂl;:
e ') = eat) = L L RN
r{a,x3u') = r(a,x38"') % s_in(—e'Tet) + m , (9.11) ‘ N

Py
A
»|
v, 4
N INP

»
{'i
A\ Y

A
iy
O

g A

':":.

where 8' = cos~1(g'-k) = cos~!(£-k) = 8, and the angle of the transmitted

a s
p)
2L
lJl ‘
T
Rt

light is

A
-.:s *.;r
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L&
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b1

Py,
5y

%
g

g
o
Pt

=]
1]
'r
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e
P

sin-! (m'é sing') .

l'v

The direction § of a reflected beam is given in terms of the incident beam &'

by

£=8" -2(8"-k)k = g'-2u'k . (9.12) N

From (9.11) and (9.12), we can express the continuous reflectance function as
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ra,x3u',0"3u,6) = ra,xsu")s(u"+u)s(e'-0) , (9.13)

where § is the Dirac delta function. The delta functions select the allowed
direction (u,¢) of the reflected ray, given the direction (u',¢') of the
incident ray.

Substituting (9.13) into the defining equation (3.19) for r(a,x3r,s|u,v)

gives

r(a,xjr,s|u,v) = L [f dude J[ du'de' rla,xsu')e(u'+u)s(o'=0) ,

Q
uv qu Qrs

which can be rearranged to become

) 1
r(a,x;r,s|u,v) = T f du f de f du' r(a,xju') §(u'+u) f do' s(o'-9)) .
uv Au Ad Ay Ad
u v r
The integrals are zero unless A¢s coincides with 8¢, i.e. unless s = v§ and
unless du, and Au_ are corresponding u~bands in opposite hemispheres (which is
by definition the case for a reflectance function), i.e. unless r = u. The

last equation thus reduces to

A¢V 61""\1 65—‘1
r(av‘(;r’sluvv) = = J. du r(a,x5u) ,

uv Au
u

or upon setting r = u and s = v, and evaluating the Kronecker delta symbols,

we have for every Qrs in I_,

r(a,x;r,s|r,s) = L f du r{a,x3u) = L f r{a,x308) sind8de . (s.14)
Au Au
r Aur r Aer
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The integral over 8 in (9.14) can be numerically evaluated using (9.11) in the
integrand. The values of r(a,xjr,s|r,s) obtained from (9.14) then give a

direct check on the values obtained from ray-tracing with zero wind speed. A

e

-
.. o
similar ~heck can be made for the specular r(x,a;r,s|r,s) values. Checks on oave
S
the transmittance functions for the specular case are not as simple, because }f ‘4

incident rays in one quad Q.  can be transmitted into two or more quads Quv?
as a result of refraction changing the direction of the incident and final
rays.

Comparison of the results from (9.7a) and (9.14) also gives a lower bound
on the number of rays which need to be traced in order to achieve an accurate

estimate of r(a,xjr,s|u,v).
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10. THE REFLECTANCE OF THE LOWER BOUNDARY ABOVE AN INFINITELY DEEP,
HOMOGENEOUS LAYER

In the assumptions governing the Natural Hydrosol Model (§la) we have
allowed for two possible types of lower boundary of the hydrosol: either the
physical bottom of an optically shallow water body, or a plane below which the
water body is homogeneous and infinitely deep. The physical bottom, in the
form of a matte reflecting surface for example, is considered in (5.53). In
this section we consider the remaining case: we shall specify the
construction of the matrix gp(z,b;z) in (5.52) for the case where X[z,b] is an
infinitely deep homogeneous medium, so that b = =, The detailed presentation
of the requisite theory, called the eigenmatrix method, leading te ﬁp(z,m;l)
would be out of place in the present study, since the eigenmatrix method forms
an alternate and independent approach to the problem of computing the light
fields in natural hydrosols. However, there is one result of the theory which
we find convenient to adopt in the present NHM, namely the form of ﬁp(z,m;l)
given by the eigenmatrix method. We shall present only the minimum directions
needed to implement the construction of ip(z,m;z). A detailed description of
the eigenmatrix theory can be found in Preisendorfer (1988).

Consider an infinitely deep hydrosol X[z,»] whose local reflectance
matrix $(y3;%) and local transmittance matrix i(y;%), as defined in §5, are
independent of depth y in X[z,»]. There are two cases to consider:

(i) The case of 2 = 0. 1(y;0) and p(y;0) are given by (5.21). These

matrices are mxm.
(ii) The case of £ = 1,...,n. i(y;2) and 5(y;2) are given by (5.24).
These matrices are (m-1)x{(m-1).
These two distinct cases are necessary in the present context because we must
form an invertible matrix, namely §+, below, in order to define ip(z,m;l).

Recall that we "padded" 5(y3;%) and i(y;2) in (5.29) to achieve a unified set
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of formulas. This unification is satisfactory everywhere in this work except
here, since the padding produces a singular §+ matrix. We must momentarily
use the stripped-down matrices of (5.21) and (5.24) to find E*(2) in (10.7).

Begin by defining the system matrix K(2) for each case:

k(0) is 2mx2m case (i)

k() is 2(m-1)x2(m-1) case (ii)

where (cf. (6.8)) in general, for the appropriate case at hand:
-2(Q) 8(2)

k(2) = ’ 2 =0,.,.04n (10.1)
-8(%) 1(2)

Observe that we have dropped reference to depth y, as k(&) is now independent
of depth.
Next, form and numerically solve the eigenvector problem

k(1) E() = E(2) k(2) , % =0,..0,n (10.2)

Here E(%) is a 2qx2q eigenmatrix, while the eigenvalues are in

k(g) = diag[5+(l),5_(2)] and where, in turn, 53(1) = diag[k%(z),...,kq]. Here
q = mor (m-1), as the case may be.
It can be shown that E(%) may be written in block matrix form

B E (1)

EQ) = _ . (10.3)
E(2) E (1)

where 51(2) are gqxq matrices defined as follows. Thus, suppose the

eigenvector subroutine returns E(2) in the form of a set of 2qxl1 eigenvectors

gj(l), where
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o
= ces e 10.4
. E(2) = [e,(2) gq(l) gq+1(1) gzq(l)] (2qx2q) ( )
0
;.:
& and where (with "T" denoting matrix transpose) we have, for each j = 1,...,2q:
-
b . : . . )17 N
N e.(2) = [e.(132),...,e.(q32), e.(q+132),...,e.(2q3%)] . (10.5) o
N =j j j i j oy
b Sy
?' A et
{ ;~
Partition e.(%) into two subvectors he
- =1 ’.&
b L
3 \
K Vs
+ .I.o.
" et (2) = [e.(132),.. e (q30)17T IS,
e =] j j . iy
, 3= 1,.404,2q (10.6) K
3 e. (1) = [e.(q+1;2),...,e.(Zq;l)]T.
W -J J J
[y
Ny
Ay
W
" Then the gi(l) in (10.3) are defined as
il + + +
i E7(2) = [e7(2) --- g;(ﬂ.)] (qxq) (10.7)
A
The required reflectance ﬁp(z,m;l) is then given by the following two cases:
L]
ﬁ- case (i): For 2 = 0,
28 £,(z,230) = ~E (0)[E'(0)]-! mxm (10.8)
i and LN
! £,(z,=30) = 0 by (5.51).
‘) . ", '.
': case (ii): For 2 = l,...,n aﬂf'
. - + . [ J
£,(z,=32) = -E ()[E ()]~} (m=1)x(m-1) N
X VN
- and '-::"-:\
» A
", RSN, &
’ t,(z,»38) = £ (z,=32) for ¢ = 1,...,n-1 (10.9) RO
. —_ —_— NN
R t,(z,25n) = 0 ¢ L =
.’ r,{z,»3n) = 0 or = n. A A
W Lo,
W
; vy
' v‘-'r\
: NN
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Therefore when we are integrating the Riccati equations f%-mode by %-mode, - ‘,'

".g:ﬁ I

as described in §7b, if we desire to have an optically infinitely deep .-.e.t";%ﬁ
[

homogeneous medium below the lower boundary, we must set up and solve the _-Q._:-{,-“ o
Pt
eigenvalue problem (10.2) for each %-mode, in order to obtain the required r_},-g*

e

) "‘n’,&:’ ""A

ip(z,w;z) from (10.8) or (10.9). These gp(z,w;l) are then used as the initial ;.;,-'e",s."\-
conditions for the upward integration sweep of (6.48), as described in %‘:-_\. ~
: DAY

§7.b.4. At this point just prior to the sweep it is permissible to fill out ::j‘_::-_'_;

f.
K}
o,

"

L
>

the ip(z,b;l) matrices in (10.9), to become once again mxm, by adding zeros to

make their m rows and mtM columns. <,'~‘. Ny
S N
. ] > !
We note that, just as for the matte bottom (recall (5.50), (5.5.1, and \:‘_z:.%.
R Y9
L LY,
. . . . HORTR
(5.53)), we have t,(z,=38) = £,(z,=32), ¢ = Ll,...,n-1. (This equality does Ny
@
not hold when 2 = 0 or & = n since we have defined £,(z,»;%) to be zero in EC'.:;:;;‘S
AN
- ’
these cases, consistent with our notationally convenient definition of ” .“
e %1%
A3(y32) = 0 for ¢ = 0 and & = n.) However, unlike the matte bottom case, Xt W
]
t,(z,»3%) is nontrivial for & > 0; therefore gl(yj,m;l) must be obtained for Y ':4
b
all ¢ = 0,...,n by integration of (6.48) with £,(z,=32) as the initial ._\?: ~.:§
i )
condition. (Recall the discussion in §7b4.) But since both ﬁp(z,m;l), :&\\ ::;":'
@
£ =1,...,n-1 2nd equation (6.48) are independent of p = 1 or 2, it is PRt
i '
. *
necessary to actually integrate (6.48) only for the case of p = 1; the needed ".",:
W
gz(yj,w;ﬂ.) values follow from gz(yj,m;l) = gl(yj,m;l), £ =1,...,n-1. "h T*
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11. COMPUTATION OF THE QUAD-AVERAGED PHASE FUNCTION

Given the continuous, geometric phase function p(yju',¢';u,¢), the quad-
averaged phase function p(yjr,s]u,v) can be computed by a numerical

integration of the defining equation (3.11):

p(ysr,sju,v) = ﬁl_ [ [ dude [ [ du'de' p(ysu',0"3u,0) . (11.1)
w Q. s

The continuous function p(y;u',9';u,9) = p(ysv) (cf. (2.5)) for a fixed

depth y may be available as an analytic function of ¢ derived from scattering
theory, or it may be obtained from measurements at a discrete set of y values,
for example by a spline fit to the measured values. Since p(y;¢) for natural
waters is an extremely peaked function of V near y = 0, great care must be
taken in the evaluation of (1ll.1l).

From the discussion of the symmetry of the phase function in §3d, we know
that p(ysu',¢'su,¢) depends not on ¢' and ¢ separately, but only on ¢'-¢
through cos(¢'-¢), and that p(y3r,s|u,v) therefore depends on |s-v|. Thus it
1s not necessary to integrate (l1.1) for all possible pairs of quads Q. and
qu in order to obtain all the possible values of p(y;r,slu,v). It is
sufficient to fix Q.q at Q. and then to evaluate (1ll.1) over the hemispheres
containing Q,, defined and for the range v = 1,2,...,n+l. This is the

discrete counterpart to setting ¢' = 0 and allowing ¢ to range over 0 to w in

order to generate all possible values of cos{(¢'=-4). Equation (ll.1) thus can

be written

plyse,1]u,v) = al— [du [ de [ du' [ do' plysu',e'su,0) . (11.2)
uv Auu A@V Aur Arb1
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In order to evaluate (11.2), each quad Qv is subdivided into a grid of n, by
n, subquads of size 8u, = Auu/nu by 8o, = A¢/n¢. If Q,, is a polar cap,

u = m, then 8¢, = 2n/n¢, so that the entire cap is subdivided into sectors.
Corresponding subdivisions are made for Q,g+ We then evaluate (11.2) as a

summation over these subquads:

n n n n
p(ysr,1|u,v) = 1 zu Su z¢ 8¢ zu su, z¢ §o, p(ysu.,0l5u.,6.) (11.3)
'Ly ’ - . . 9 » sy . 3 .
Buv is1 t j=1 J k=1 k 1=1 L ki)

Here (ui,¢j) is at the center of the (i,j) subquad of Q,,» and (ué,¢&) is at
the center of the (k,%) subquad of Q.1+ The argument of the phase function is

then ¢, defined by
' 12 s 2 k% '
cosy = u u. + (1 - M )4 (1 - ui) cos(¢2 - ¢j) . (11.4)

Note that even though we have set s = 1, we must still integrate ¢' in (11.2)
over the range A¢] of the quad Q) centered at ¢' = 0.

The more subquads in er and Q that is the larger n_ and Nys the more

uv’ W

accurate 1is the numerical estimate of p(y;r,llg,v). Moreover, there is no
requirement that all quads have the same number of subquads. Thus when Q1
and Q,, are the same or adjacent quads, so that the forward scattering angles
(i.e. ¥ near 0) are picked up in the integration, we can use more subquads in
Q1 and Q, in order to adequately resolve the highly peaked behavior of
p(yscusy) near cosy = 1. The number of subquads needed to achieve the
required accuracy in p(y;r,llu,v) also depends on the quad parameters m and
n. If m and n are small, so that the quads er and qu are large, then the
phase function can vary significantly as the directions (u',¢') and (p,d)

range over the large quads. In this case we need many subdivisions in order

ﬁ
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to pick up the variations in p. However, if m and n are large, so that Q.
and Q,, are small, then p varies less as (u',4') and (u,$) range over the
small quads er and Q.- In this case we do not need as many subquads.

In the evaluation of (11.2), er and qu can be in the same hemispheres,
l.e., Q. in 2y and Q. in Z4y OF in opposite hemispheres, i.e. Q. in Z, and
Q,, in E;. From the symmetry relation (5.1), we see that when Q. and Q,, are

in the same hemisphere, Eq. (11.2) yields p+(y;r,s|u,v); when Q.; and Q  are

in opposite hemispheres we get p-(y;r,slu,v).
a. Checks on the Quad-Averaged Phase Function
From (2.7) we know that the phase function must satisfy

n
p(ysu',0'5u,60) dude =1

ot

1
J
=1
for any depth y and direction (u',¢') in Z. This equation is discretized in
the usual manner by using (3.20) to write the continuous phase function
p(ysu',0'su,0) as a linear combination of discrete phase functions; the result
is

1
Q 2 g p(y;rysluvv) qu
u

1 + 1 -
=q % % P (y;r,s|u,v)9u o g p (y,r,s[u,v)Quv =1 (11.5)

rs u

v

for all depths y and quads Q,g. In the first form of (11.5) the sum is over
all Q,, in . The hemispherical summation ranges of the (u,v) in the expanded
form of (11.5) are fixed once Q.  is fixed (recall (3.2) and (5.1)). For

example, if Qs is in 3., then in z Z p+, (u,v) is summed over Z, while
u v

TN R . . . . » cm At
"\,\\\." MR R T %) I LA . TR
"‘“\.f'.'.-.'-.‘\."\"\'_' A NN . Sy N’\"‘""‘ ..!.' .':
~f. "\* ».' "..J'\d" 3 ’ » MLt



in P (u,v) is summed over Z_. This equation can give a check on how
b -
u v

accurately we have performed the integrations of (11.2). Comnversely (11.5)
can be used to define p+(y;r,s|r,s) in highly forward scattering media, after
all other terms have been computed,* as will be discussed in paragraph b,
below.

As an illustration of these results, consider the case of spherically

' symmetric scattering, for which

(11.6)

R
B
-

plysu',0"5u,¢0) =

for all (u',6'), (u,4) in =. With (11.6) in (ll.1) we get just

Q
rs

+ .
p (ysr,s|u,v) = R

for all quads Q.. and Q,,. The check (11.5) then gives

1 Qrs
Ao a rolleg
rs u v

as required.

b. Special Computation of the Forward Scatter Phase Function p+(y;r,s|r,s)

Equation (11.5) can play a role even more important than that of checking

F the numerical accuracy of (11.3). 1In particular, (11.5) can be used to
' compute the quad-averaged phase function for forward scattering, thus

eliminating the need for knowledge of p(y;¥) at ¥ = 0 and reducing the

* In this way we can cut the Gordian knot of the forward scattering problem in
phenomenological approaches to radiative transfer. See Preisendorfer
(1965, p. 55).
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numerical difficulties which arise from the extremely peaked nature of p(y;¥)
for very small } values.

To justify the following reformulation, we note the following rules of
thumb, which are based on extensive testing of the model with realistic phase
functions. For partitions of the unit sphere such as those illustrated in
Fig. 4, quad sub-divisions given by n, = n, = 4 give accurate results for
quads which are not adjacent or identical (i.e., for those quads for which
p 2 10°), in the sense that further increasing n, or n, does not significantly
change the computed values of pi(y;r,l|u,v). If adjacent quads are subdivided
with ten times the resolution used for non-adjacent quads, i.e. with
n, =n,

and the balance (11.5) holds to within a few percent. If a balance of (11.5)

. +
= 40, then the associated values of p'(y;r,llu,v) are also accurate,

ié required to within, say, 1 part in 1000, then it is necessary to make
extremely fine subdivisions of the forward scattering quads whenever Q. and
Qv coincide. The computations for the forward scattering quads alone thus
take much more computer time than the computations for all other quads
combined.

Since the forward scattering values p+(y;r,l|r,l) are clearly the last
values to achieve numerical accuracy, it is reasonable to compute all other
values pi(y;r,1|u,v) via (11.3) and then to use (11.5) to obtain

P+(Y;r,1|!',1)=

+ 1
p (ysr,l|r,1) =1 - e Z z p*(y;r,llu,v)
“rl u v
(u,v)z(r,1) (11.7)

- 51— z z p-(y;r,llu,v) .
rl u v
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Note that when (11.7) is employed to obtain the forward scatter values,

the subquad directions (ui,¢j) and (u&,¢£) of (11.3) and (11.4) never

coincide, and therefore we never require a value of p(y;t¥) for ¢ = 0. Indeed,

there is always some angle y,, determined by the quad partitioning and the

quad subdivisions, such that p(y;j¢) is not required for 0 < ¢ < y,. For quad

partitions as in Fig. 4 and for n n, = 40 subdivisions for adjacent quads,

u ¢

Vg = 0.02°. The smallest angles ¢ for which phase functions have been

empirically measured are about 0.1°. Analytic extrapolation can be used to
extend p(y;V¥) to the required ¢, value.

The discrete resolution of the Natural Hydrosol Model effectively frees
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the numerical model of any uncertainty owing to the unknown behavior of p(y;y) \Jhé?\,
for 0 < ¢ € ¥y, provided that an independent estimate of the total scattering -}?::}:L

N

L : o : NS
s is available.* If s must be obtained by numerical integration of the “:y1;:
. . . . QIR
defining equation (2.6), then knowledge of o(y3v) is also required for oA

9

rav, 0
0 < ¢ < Yy, even though this information is not needed for the discretization Q}}%,:‘
2
of the phase function. It can only be hoped that as computers become larger, uf;:;t
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thus permitting smaller quads and hence making ¥, smaller, that theory or TR
experiment will also extend our knowledge of o(y;j;¥) to the required smaller g, Q "IN

P N

LS At
values. & :;\*1
AU
g

L

S Ry
‘,'_& ~o \

PN !
Padint
" A
P W
SR

AR R )
RO

* For example, the volume attenuation function a(y) is measureable oo oo

with a beam transmissometer. The volume absorption function a(y) can be AEAON
determined from irradiance measurements via the divergence relation (8.9) :}};ﬁg
rewritten as a(y) = a[h (y) + h_(y)]-! g_[H+(y)-H_(y)]. The volume total “;;ghr

scattering function s(yg is then obtained from s{y) = a{y) - a(y). Here we Y

are assuming that the beam transmissometer has been carefully constructed PLEN Y,
S0 as to correctly account for the forward scattering of photons. If this i

is not the case, then the quantity s is just as elusive as p(y;0). See ) i

H.0. Vol. VI, sec. 13.5. -” ﬂ\d:
s
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12, COMPUTER CONSIDERATIONS

The original code for the Natural Hydrosol Model was written (beginning
in 1980) for a CDC 6600 computer. Storage on this machine was quite limited,
and every effort was made to minimize the use of in-core memory, often at the
expense of performing extra calculations. The most recent rewrite of the code
(in 1986) was made so that it would run on a CDC 205 vector computer with
virtual memory. Since available storage is essentially unlimited on a virtual
memory machine, the special array packing and indexing routines used in the
original code are no longer necessary. However, these features of the
original code have been retained in the current version, in order to minimize
the rewriting and debugging effort. Almost no effort has been made to rewrite
the code so that it can take advantage of the vector processing on a pipeline
computerj it remains essentially a scalar code. This section briefly
describes the structure of the code, and documents the array storage and

indexing techniques.

a. Computational Flow Structure

The various computations described in §7 to §ll are grouped into five
separate programs, which are run in sequence to obtain the solution of a given
problem. The first three programs compute the surface boundary reflectance
and transmittance functions. The fourth program solves for the radiance
amplitudes at all depths, and the fifth program then reconstitutes the
radiances and analyzes the results. The specific tasks of these programs are

charted in Fig. 10 and are described as follows.

Program I. This program does the ray-tracing described in §9a and charted in

Fig. 9. To initialize the program we first select the quad resolution
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parameters m and n and a scheme for partitioning the unit sphere into the
chosen number of quads, as described in §7a.l. We then select the desired
wind speed at the water surface and the initial number of surface realizations
to be made. The program then repeatedly generates a random surface

realization, randomly selects a direction in Q and sends a parent ray

rs’
toward Qrs and the realized surface. All the reflected and refracted daughter
rays are traced to completion, and the quads receiving the final daughter rays
are determined. One parent ray is sent toward each quad Qs in the first
quadrant (of the wind-based system shown in Fig. 1) for each surface
realization, until the desired number of surface realizations has been made.
For each (parent ray)-(daughter ray) pair, the program records the values of

r,s,u,v, and the radiant flux of the daughter ray. Thess ray-tracing

computations form a significant part of the entire work count of the NHM.

Program II. This program tallies the ray information from program I and
computes the four quad-averaged reflectance and transmittance arrays using
(9.1a-d) and (9.7a-d). The individual elements of the f(r,s|u,v) arrays will
approach their final values at differing rates as more and more rays are

tabulated. For a given input quad Q the output quads Qv which are near

rs’
the specular (still water) reflection or refraction directions of the parent

rays in Qs will receive far more reflected or transmitted daughter rays than

those quads which are in directions far from the specular directions. Thus

after only a few hundred surface realizations, some elements of f(r,s|u,v) may

[

have achieved rheir final values with great accuracy, whereas other elements Cj:ﬁ:f:
RN
may not have had a single ray path connect the particular Q,s and Q,, quads. :3}?{}2
AN
However, those elements which are largest in magnitude dominate the behavior ERERENEN

o

Py

of the light field in the sea, so it is not necessary to know all matrix
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elements to the same degree of accuracy. The user of the NHM is thus faced

with making a qualitative decision regarding the desired accuracy of the
! elements of the r and t arrays. The larger matrix elements can and must be
b determined with great accuracy, but the smaller matrix elements, which are
many orders of magnitude smaller than the larger elements, cannot be
accurately estimated unless a relatively large number of rays is traced.
Programs I and II can be run repeatedly to generate new batches of rays
and to incorporate these new rays into a running, accumulating calculation of
the r and t arrays. When the larger matrix elements have reached their final
values, the r and t matrices can be deemed sufficiently accurate for the
problem at hand, and the solution in the body of the hydrosol can proceed.
How many rays need to be traced in order to reach this point depends on wind
speed and quad partitioning and must, therefore, be determined by the

researcher on a case-by-case basis.

PR

Program III. This program computes the four spectral reflectance and
transmittance arrays for the upper boundary, using (5.31c), (5.32), (5.34),
(5.36) and the quad-averaged arrays from program II. At this point the air-
water surface boundary conditions are known, and we can proceed with the

solution for amplitudes.

Program IV. This program performs the remaining initialization steps of
(7a.3)-(7a.5) and then assembles the solution amplitudes as described in
§7b., The internal structure of Program IV is essentially that shown in
Fig. 7. This program is the other main consumer of computer power in the NHM,

X owing to the discretization of the phase function.
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Program V. This program first synthesizes the radiances from the amplitudes
found in program IV, Then the results are analyzed and derived quantities are
computed, as detailed in §8. Multiple runs of program V can be made for a
given set of output from program IV, For example, one run can be made to
check the balance of the radiative transfer equation, another run to compute
the irradiances and other derived quantities, and then a run to generate
graphical output, etc.

We note again, as discussed in §7a, that the expensive computations for
the quad-averaged upper boundary r and t arrays need be done only once for a
given wind speed and quad resolution. Likewise, the expensive discretization
of the phase function is a one~time computation for a given phase function.
The actual solution of the radiative transfer equation in programs IV and V is
relatively inexpensive., Therefore, holding the wind speed and phase function
fixed, it is possible to make many runs of programs IV and V in order to study
the effects of varying the incident radiance distribution, the scattering-to-

absorbtion ratio s/a = w/(l-w), the bottom boundary type, etc.

b. Array Storage

In the NHM there are several occurrences of large sparse or symmetric
matrices. Consider, for example, the quad-averaged upper boundary reflectance
and transmittance arrays s(r,s|u,v). These four-index arrays are stored (for
reasons of FORTRAN limitations at the time the code was originally written) as
two-dimensional arrays according to the layout of Table 3. As seen in
Table 3, each row of the m(2n) x m(2n) array references a particular input
quad Qrs’ and each column references a particular output quad qu. The

symmetries of these arrays as shown in (3.24) give the arrays the block

structure
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where A and B are mn x mn blocks. (Note, for example, in Table 3 that ::.::::::o::
i‘;l'g'!‘
SO
s(1,n+1|1,n+1) = s(1,1]1,1) by (3.24c) and s(1,1]|1,n+1) = s(1,n+1|1,1) by KRN
(3.24b).) Thus it is necessary to store only one-half of s, say the _(n "
BOEON
"top-half" [A B]. When an array element in the "bottom-half" [B A] of s is f‘_‘-:‘
(.‘:.1\ (d
. . . . . . d
needed, simple indexing calculations can be used to obtain the corresponding :‘ o
@
element from the stored top-half. ';:.:":w‘
eyl
We note that the ray tracing of program I fills all m(2n) columns ::":‘:
ety
comprising the elements of rows l,2,...,m(%+1) of Table 3 as Qrs sweeps over 'R‘ :!ztf
@
the first quadrant of = (as defined by the wind-based coordinate system of ' W
p “'.l‘..l:
. . i
Fig. 1), and all qu throughout = receive reflected and transmitted daughter :‘a:q.f
=R
rays. The remaining rows m(%*-l)*-l,...,mn of the "top-half" of s are then !'l'f
defined by symmetry. ':-3.;.;.
AR
. N
We also note that since the polar caps have no azimuthal dependence, a ;«':w{;\.
RN
.-' &’N
parent light ray going toward anywhere in the polar cap Qg = Q, and a :»“v-i’\{v
@
daughter ray going to the non-polar quad qu can be assigned the storage "il" v
‘.‘-. ."\
location s(m,1|u,v). Locations s(m,2|u,v),...,s(m,n|u,v) then remain :‘_‘:\"‘:3 ‘
AR
St
unused. Likewise, a parent ray going toward a non-polar quad Q. and a a g“;.
]
daughter ray going to the polar cap Q,, = Q, can be assigned to s(r,s|m,1); ‘}::-J: 3
STl
. Sy
then s(r,s|m,2),...,s(r,s|m,n) are unused. All light rays connecting one ety
_.-\.'_:.f,_ :
WV
polar cap to the other are assigned to location s(m,l|m,1). With the t{::{._'_{:
@
exception of this special storage for elements involving polar caps, the A |.
it
o
four-index matrix element s(r,s|u,v) is stored at location (I,J) of the two- *:-r::.r:‘
M
dimensional array s of Table 3, where &'&";
@
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I =r+ m(s-1)
(12.1)
J =u + m(V‘l) .
)
: Ot
I and J follow FORTRAN conventions with I labeling the rows from top to bottom &.ﬁkﬂﬁb;
. O
. . . dl
in Table 3 and with J labeling the columns from left to right. Since only the Votlovscrls
. . . _,,\w' N
top half of the full array is stored, the (I,J) location given by (12.1) may pe e
$;f:}$¥ ‘
need modification: :S;:ﬂt¢3
:._;- .:\‘.;J ’ (
] L
. . . "‘»"‘;s‘.‘c
if I < mn, element (I,J) is stored at location (I,J) ”4”$§
\ ‘l‘ 'l"'l
. . ) ¢
if I >mn and J < mn, element (I,J) is stored at (I - mn, J + mn) (12,2) ¢a§af%
N.
if I > mn and J > mn, element (I,J) is stored at (I - mn, J - mn). “* .f‘
':Y‘ l'gi
U
The values of (r,s,u,v) corresponding to location (I,J) are given by A thtﬂ
f
SRR
) 8
. _ WAt
r =1 dm> withr =mwhen I . =0 ! ﬁzﬁaﬁ
"5:‘ )
.. "‘.ﬂ"..
DOUAN
o ",:l:‘...,:
g =1 + I—-_.]L D ,' u
m |’ ) @
(12.3) e
) e
_ . ) _ N GAE
u = ‘Imod m * with u = m when Jmod m 0 ?:: :{::f’::
; g
ARG
' e
N = PR
veie B PRI
-.-'v?;-‘;vf‘
R
B At
Here [x) is defined as the largest integer less than or equal to x. A ""6 :
e
The associated spectral upper boundary reflectance and transmittance ‘
3

functions §p(r,k|u,2) have a matrix structure like that shown in (5.41) and
(5.43) and in Tables 1 and 2. There is no need to store the mxm blocks of
zeros, which occur when ép(kll) has (k + 2) odd. Thus a factor of two in

storage can be saved by reducing the full m(n+l) x m(n+l) array §_ to
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gp(o|o) gp(o]z) gp(o|4) gp(oln) C

s . 2
ECIPDINNEN WekD 5,1)5) - 3 (1]n) ) '.3::5
5= | & : 3 . (12.4 A
P 5,210) 5,212 §,(2[n) ok':':.?"':.:

) gp(nIO) 5p(n|2) R gp(nln)

! L - P

th . : : R, ),

th column is determined by our choice of n

The exact form of the n row and n
even. *¢Q3‘

Sp2cial matrix manipulation routines are easily written to handle the St 1)
matrix operations, such as those of eqs. (6.55) or (7.3), which involve these

compressed arrays. The four-index matrix element §p(t,k|u,£) 1s stored at ARe

location (I,J) of the two~dimensional matrix of (12.4), where ,“\;5;'
. L !

= Bty
I =mk + r k,y‘«%

(12.5) f~:fa:£&;,.

RGNS

J = mg + u-m{%—l-- l:%:l}, NG LT
. J

Y

with [x] as the largest integer less than or equal to x. Conversely we can

retrieve (r,k,u,t) from (I,J) via

l r= Imod m

= | L
< 5]
(12.6)
= J
Y J+m[M:] mod m
m[4]
Q' et e ettt
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As previously discussed (§3d), the symmetries of the phase functions
pt(y;t,slu,v) make possible a considerable savings in computer storage.
Recall that in evaluating (11.3) we set s = 1 (with ¢} = 0), so that as v
ranged from 1 to n, |¢s-¢v| = |¢1-¢v| ranged from 0 to n. Moreover, for any
arbitrary pair of angles ¢ and ¢, with s = 1,...,2n and v = 1,...,2n so that
0 < ¢g, ¢, < 2m, the included angle |¢S-¢V| between ¢, and ¢, lies in the
range 0 < |¢S-¢v] < w. Therefore the general isotropic phase functions
pi(y;r;slu,v) can be obtained from the computed arrays. The arrays

pt(y;t,slu,v) are stored as three-dimensional arrays indexed by (I,J,K) where

I =r
u ifr=m
utm|s-v| if |s-v| < n and u z m
7= (12.7)
u+m(n—|s-v|m°dn) if |s-v| >nand u z m
m if u=m

Vol
[}

the depth index, with Y1sY2reees¥ireees»Yygp 25 in Fig. 6.

Since J runs from 1 to m(n+l) as s and v run from 1 to 2n, the isotropic phase
functions can be stored in arrays of size m x m{n+l) x YOP. This is a
considerable savings as compared to the size m(2n) x m(2n) x YOP required if

the isotropy of the phase function is not explicitly used.
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